

Oracle Autonomous Database

Hands-on Workshop

Ver 11. (04/17/19)

0-1

© 2019 Oracle Corporation

Oracle Autonomous Database

Contents

0. WORKSHOP OVERVIEW 0-2

LAB ENVIRONMENT SETUP 0-4

1. PROVISIONING AND CONNECTIVITY 1-11

LAB 1-1: SIGN-IN TO ORACLE CLOUD INFRASTRUCTURE CONSOLE 1-12
LAB 1-2: PROVISIONING AN AUTONOMOUS TRANSACTION PROCESSING DATABASE 1-16
LAB 1-3: CONNECTING TO ORACLE AUTONOMOUS DATABASE 1-24

2. DATA LOADING AND INTEGRATION 2-33

LAB 2-1: LOADING DATA USING SQL DEVELOPER IMPORT DATA WIZARD 2-34
LAB 2-2: LOADING DATA FROM OBJECT STORAGE 2-40
LAB 2-3: LOADING DATA USING SQL LOADER 2-52

3. MIGRATING TO THE AUTONOMOUS DATABASE 3-62

LAB 3-1: MIGRATING TO AUTONOMOUS DATABASE USING DATA PUMP 3-63

4. DEVELOPING APPLICATIONS WITH AUTONOMOUS DATABASE 4-71

LAB 4-1: BUILDING NODE.JS APPLICATIONS WITH ADB 4-72
LAB 4-2: BUILDING MICROSERVICES WITH DOCKER 4-78
LAB 4-3: USING PYTHON WITH AUTONOMOUS DATABASE 4-85

5. MANAGING THE AUTONOMOUS DATABASE 5-89

LAB 5-1: START, STOP AND SCALE AUTONOMOUS DATABASE 5-90
LAB 5-2: USING REST APIS TO MANAGE ADB 5-95

6. PERFORMANCE MONITORING 6-105

LAB 6-1: DATABASE SERVICES AND RESOURCE MANAGEMENT IN ATP 6-106
LAB 6-2: SCALABILITY AND PERFORMANCE 6-110
LAB 6-3: PERFORMANCE MONITORING 6-115

7. OPTIONAL LABS 7-121

LAB 7-1: EXPLORING AUTONOMOUS DATABASE USING SQL DEVELOPER 7-122
LAB 7-2: USE SWINGBENCH TO GENERATE WORKLOAD AND MONITOR PERFORMANCE 7-135
LAB 7-3: BACKUP AND RECOVERY 7-140

0-2

© 2019 Oracle Corporation

Oracle Autonomous Database

0. Workshop Overview

0-3

© 2019 Oracle Corporation

Oracle Autonomous Database

Introducing Oracle Autonomous Database

Oracle redefines data management with the world’s first autonomous database. Oracle
Autonomous Database eliminates complexity, human error, and manual management, helping to
ensure higher reliability, security, and more operational efficiency at the lowest cost. Compared to
traditional database technology, an autonomous database cloud has greater availability greater
security, and lower operating costs.

Other industry terms for autonomous database are self-driving database, self-repairing and self-
securing.

• Self-driving means that the database can automatically provision, or deploy databases; and
monitor, back-up, recover, and troubleshoot those databases. It also means to instantly grow
and shrink compute or storage without downtime.

• Self-securing refers to adaptive AI-enabled threat detection and remediation, along with
automatic data encryption. A self-security database can also apply security patches
automatically.

• Self-repairing databases are automatically protected from downtime. With up to 99.995
percent availability, a self-repairing database experiences less than 2.5 minutes of downtime
per month, including planned maintenance.

With Oracle Autonomous Database you do not need to configure or manage any hardware or
install any software. Autonomous database handles database creation at the push of a button,
database backups, patching and upgrading the database, and growing or shrinking the database.

Oracle Autonomous Database is built upon the Oracle Database, so that all applications and tools
that support Oracle Database also support Oracle Autonomous Database. These tools and
applications connect to autonomous database using standard SQL*Net connections. The tools and
applications can either be in your data center or in a public cloud. Oracle Analytics Cloud and
other Oracle Cloud services are preconfigured for autonomous database.

Optimized for Workload Types

Modern automobiles are specialized by workload: family car, van, pickup truck, sports car, etc. In
the same way, the Autonomous Database consists of a single set of technologies available in
multiple products, each tailored to a different workload:

Oracle Autonomous Data Warehouse

Autonomous Data Warehouse is a fully managed database tuned and optimized for data
warehouse workloads with the market-leading performance of Oracle Database. As a data
warehouse developer, business user, or data scientist, Autonomous Data Warehouse lets you use
all your existing data warehouse design, data integration, analysis, and reporting tools.

Oracle Autonomous Transaction Processing

Autonomous Transaction Processing is designed to run mission-critical enterprise applications,
including mixed workloads and real-time analytics, with no compromise on application
performance. It provides a high-performance Oracle Database in an environment that is tuned and
optimized for transaction processing workloads.

0-4

© 2019 Oracle Corporation

Oracle Autonomous Database

This workshop walks you through all the steps to get started using Oracle Autonomous
Database.

Workshop Objectives

The Oracle Autonomous Database hands-on workshop is focused on the following (some topics
are dependent on whether the workshop is Transaction Processing focused or Data Warehouse
focused):

• Provisioning and Connectivity: Learn to provision a new autonomous database and connect
your favorite client tools.

• Management and Monitoring: Learn to Manage and Monitor the service, and scale
dynamically to experience the elasticity of autonomous database.

• Data Loading and Integration: Learn to load data into the autonomous database and
integrate with data residing in Cloud storage or other RDBMs (e.g. using Oracle Data Sync).

• Migration to Autonomous Database: Migrate Oracle Databases on premise or Cloud to the
autonomous database.

• Build Applications using Autonomous Database (ATP): Learn to use your favorite
development environments to connect and build applications using the autonomous
database.

This is an instructor-led workshop, please follow the guidance from the instructor before
attempting the lab exercises.

Lab Environment Setup

Cloud Accounts

Obtain your access to the following Cloud Services and lab accounts. Your instructor will provide
this information.

• Oracle Cloud Account (includes Oracle Autonomous Database):

– URL :

– Cloud Tenant :

– User Name :

– Password :

– Cloud Region :

• Lab VM Account:

– Remote Desktop IP :

– User Name :

0-5

© 2019 Oracle Corporation

Oracle Autonomous Database

– Password :

• OCI Compartment to Create Autonomous Services

– ADB Compartment :

Required Software

A lab VM hosted in Oracle Cloud Infrastructure is provided to you to run the hands-on lab
exercises. However, to connect to the lab VM, you would need the following software:

For Microsoft Windows hosts:

• Windows 10, Server 2012 R2, 2016

– Install the Remote Desktop App from the Microsoft Store from the link:

• https://www.microsoft.com/en-us/store/p/microsoft-remote-desktop/9wzdncrfj3ps

• Windows 8

– Use the built-in Remote Desktop Connection application with the following Hotfix:

• http://www.microsoft.com/en-us/download/confirmation.aspx?id=35387

• Windows 7, Server 2008 R2

– Use the built-in Remote Desktop Connection application with the following Hotfix:

• https://support.microsoft.com/en-us/help/2923545/update-for-rdp-8-1-is-
available-for-windows-7-sp1

For macOS, Mac OS X hosts:

• Install Microsoft Remote Desktop 10 from the App Store

About the Lab VM

The lab VM is a preconfigured virtual machine that is available to you to assist with the lab
exercises. Without the lab VM, you would need to install quite a few software components which
would take valuable time away from the class.

The lab VM is hosted in the Oracle Compute Cloud and you would connect to it from your
laptop/desktop using the RDP protocol.

The lab VM includes some of your favorite client tools and other required software preinstalled to
help you complete the labs. Below is a partial list of software packages that are preinstalled and
configured in the VM:

• Oracle SQL Developer

• Oracle Database Client

• Swingbench load generator

https://www.microsoft.com/en-us/store/p/microsoft-remote-desktop/9wzdncrfj3ps
http://www.microsoft.com/en-us/download/confirmation.aspx?id=35387
https://support.microsoft.com/en-us/help/2923545/update-for-rdp-8-1-is-available-for-windows-7-sp1
https://support.microsoft.com/en-us/help/2923545/update-for-rdp-8-1-is-available-for-windows-7-sp1

0-6

© 2019 Oracle Corporation

Oracle Autonomous Database

• Node.js & Docker

Lab VM Setup Steps

Perform the following setup before starting the lab exercises.

STEP 1: Connect to the Lab VM

• To access the lab VM, start Microsoft Remote Desktop 10 App on macOS, or Remote
Desktop Connection or Remote Desktop for Windows.

Windows Mac

• Add a new connection for the lab VM. If this is your first time using the App, click on Add
Desktop, or you may click on (+) then Desktop.

Windows Mac

0-7

© 2019 Oracle Corporation

Oracle Autonomous Database

• On the Add Desktop pop-up, enter the Remote Desktop IP or the domain name of the lab
VM as PC Name and.

Windows Mac

• Click on (+) to add a user account, or the User Account and select Add User Account.

Windows Mac

• Enter User Name and Password provided to you for the lab VM. Click Save.

Windows Mac

0-8

© 2019 Oracle Corporation

Oracle Autonomous Database

• Click Save one more time to Save the connection.

Windows Mac

• Connect to the lab VM by Double Clicking the connection.

Windows Mac

0-9

© 2019 Oracle Corporation

Oracle Autonomous Database

• Click Continue when prompted that the certificate couldn’t be verified.

• You should now be connected to the VM and the following desktop should be displayed.

Note: If you have issues connecting, check if your firewall is blocking port 3389 as the Remote
Desktop connection uses this port. This is usually the case when you are connected to your
corporate VPN.

0-10

© 2019 Oracle Corporation

Oracle Autonomous Database

• If you see the above desktop, you have successfully connected to the lab VM.

Optional Downloads

Ideally, you should use the lab VM to run all labs. But you may be able to run some labs directly
from your Desktop, for example, labs that only require only a Web browser. Therefore, it may be
beneficial to have a local copy of the lab manual and/or the lab support files on your desktop.
Please download the files from the locations below.

Lab Manual

https://objectstorage.us-ashburn-
1.oraclecloud.com/n/oraclepartnersas/b/ATPWorkshop/o/ATPLabs.pdf

Lab Support Files

https://objectstorage.us-ashburn-
1.oraclecloud.com/n/oraclepartnersas/b/ATPWorkshop/o/ATPLabfiles.zip

https://objectstorage.us-ashburn-1.oraclecloud.com/n/oraclepartnersas/b/ATPWorkshop/o/ATPLabs.pdf
https://objectstorage.us-ashburn-1.oraclecloud.com/n/oraclepartnersas/b/ATPWorkshop/o/ATPLabs.pdf
https://objectstorage.us-ashburn-1.oraclecloud.com/n/oraclepartnersas/b/ATPWorkshop/o/ATPLabfiles.zip
https://objectstorage.us-ashburn-1.oraclecloud.com/n/oraclepartnersas/b/ATPWorkshop/o/ATPLabfiles.zip

1-11

© 2019 Oracle Corporation

Oracle Autonomous Database

1. Provisioning and Connectivity

1-12

© 2019 Oracle Corporation

Oracle Autonomous Database

Lab 1-1: Sign-In to Oracle Cloud Infrastructure
Console

This lab walks you through the steps to log in to the Oracle Cloud Infrastructure console.

Objectives

• Learn to sign-in to Oracle Cloud Infrastructure console.

Required Artifacts

• An active Oracle Public Cloud account. You may use your own cloud account or a cloud
account that you obtained through a trial or the lab account provided by the instructor.

• If you are using a laptop or a desktop, ensure that you have a supported version of web
browser for Oracle Cloud. Alternatively, you may use the lab VM that has a supported
browser pre-installed.

Lab Steps

STEP 1: Sign-In to Oracle Cloud Infrastructure Console

• Using a web browser on your laptop/desktop or the lab VM, browse to the ADB Cloud
Account URL provided to you by your instructor.

In the screenshot below, the URL assigned is https://console.us-phoenix-1.oraclecloud.com
(yours may be different so please check your lab handout).

• On the Oracle Cloud Infrastructure Sign In page, enter the Cloud Tenant assigned to you
and click Continue.

In the screenshot below, the Cloud Tenant assigned is oraclepartnersas (yours may be
different so please check your lab handout).

https://docs.oracle.com/en/cloud/get-started/subscriptions-cloud/csgsg/web-browser-requirements.html
https://console.us-phoenix-1.oraclecloud.com/

1-13

© 2019 Oracle Corporation

Oracle Autonomous Database

• You will be presented one of the following options to login, depending on whether the
authentication is federated to an external identity provider such as Oracle Identity Cloud
Services, or if it is done locally by Oracle Cloud Infrastructure.

Choose to Sign In with your Oracle Cloud Infrastructure credentials as the lab accounts are
not federated.

(or)

• Enter your Oracle Cloud User Name and Password supplied to you by the instructor and
click Sign In.

1-14

© 2019 Oracle Corporation

Oracle Autonomous Database

• Optionally, you may be prompted to change the password, especially if you are logging in for
the first time or after a password reset.

Enter the Current Password supplied to you by the instructor, the New Password, Confirm
New Password and click Save New Password.

Note the password requirements in the screenshot below.

• Upon a successful login you will be presented OCI Console Home Page. Notice that Quick
Actions, Solutions and Learn sections in the main pane and Action Center on the right.

1-15

© 2019 Oracle Corporation

Oracle Autonomous Database

STEP 2: Select your Cloud Data Center Region

• From the Region drop-down menu on the top, select the Cloud Region assigned to you by
your instructor (check your lab handout).

IMPORTANT: The drop-down displays all Cloud Data
Center regions that are assigned to your account.
Ensure that you are in the correct region at all times as
you work through the labs.

• You have successfully logged into the Oracle Cloud Infrastructure console.

1-16

© 2019 Oracle Corporation

Oracle Autonomous Database

Lab 1-2: Provisioning an Autonomous
Transaction Processing Database

This lab walks you through the steps to create a new Oracle Autonomous Transaction
Processing database.

Objectives

• Learn to provision a new Oracle Autonomous Transaction Processing database.

Required Artifacts

• An active Oracle Public Cloud account. You may use your own cloud account or a cloud
account that you obtained through a trial or the lab account provided by the instructor.

• If you are using a laptop or a desktop, ensure that you have a supported version of web
browser for Oracle Cloud. Alternatively, you may use the lab VM that has a supported
browser pre-installed.

Lab Steps

STEP 1: Sign-In to Oracle Cloud Infrastructure Console

• Sign-in to Oracle Cloud Infrastructure console by following the steps outlined in Sign-In to
Oracle Cloud Infrastructure Console lab.

STEP 2: Browse to Autonomous Database Home Page

• From the OCI Console Home Page, browse to
Autonomous Database Home Page by clicking the
hamburger Menu on the top-left and selecting
Autonomous Transaction Processing from the
Database section.

https://docs.oracle.com/en/cloud/get-started/subscriptions-cloud/csgsg/web-browser-requirements.html

1-17

© 2019 Oracle Corporation

Oracle Autonomous Database

• You will be presented the Autonomous Database Home Page where you will see the list of
ADB Databases created in your compartment and for the Region selected.

• Verify the Workload Type is ATP.

• Oracle Cloud Infrastructure allows logical isolation of users within a tenant through
Compartments. This allows multiple users and business units to share a tenant account
while being isolated from each other. More information about Compartments and Policies is
provided in the OCI Identity and Access Management documentation here.

• From the Compartment drop-down menu on the left, choose the pre-created compartment
assigned to you by your instructor (check your lab handout). Again, ensure that you are in the
correct Region and the assigned Compartment at all times, especially when you work
through the lab steps.

Note: The below screenshot assigns Q03 compartment. Please change it to your assigned
compartment instead.

https://docs.cloud.oracle.com/iaas/Content/Identity/Tasks/managingcompartments.htm?tocpath=Services%7CIAM%7C_____13

1-18

© 2019 Oracle Corporation

Oracle Autonomous Database

Note: If you have chosen the compartment you do not have privileges on, you will not be able to
see or provision any instances in it.

• Note that the list of ATP Databases shown is filtered for the Compartment selected and may
be further filtered using State and Tags Filters.

STEP 3: Create an Autonomous Transaction Processing Database Instance

• Provision a new Autonomous Transaction Processing instance from the Autonomous
Database Home Page.

• Click on Create Autonomous Database button to start the instance creation process.

Enter your assigned

compartment

1-19

© 2019 Oracle Corporation

Oracle Autonomous Database

• This will bring up Create Autonomous Database screen where you specify the
configurations for the autonomous database.

• First, validate the Workload Type selected is Autonomous Transaction Processing.

• Second, verify that your assigned Compartment is selected (check your lab handout).

• Next, specify a Display Name and a unique Database Name for the instance.

IMPORTANT: Since the lab account may be shared by others, append a unique (and unused)
integer or initials to ATPLab to come up with a unique name, for e.g. ATPLabMA (the name must
contain only letters and numbers, starting with a letter, 14 characters max).

Enter your

assigned

compartment

1-20

© 2019 Oracle Corporation

Oracle Autonomous Database

• You can choose an instance shape, specified by the CPU count and storage size. Default CPU
Core Count is 1 and Storage is 1 TB. Please keep default selections at this time.

• Specify the Password for the instance. For this lab, we will be using the following as
password:

WElcome_123#

• For License Type, you will see the following two options:

– My organization already owns Oracle database software licenses: Oracle allows you to
bring your unused on-premise licenses to the cloud and your instances are billed at a
discounted rate. This is the default option so ensure you have the right license type for
this subscription.

– Subscribe to new database software licenses and the database cloud service: Your
cloud service instance should include database license. This is an all-inclusive cost and
you do not need to bring any additional licenses to cloud.

• Select My Organization Already Owns Oracle Database Software Licenses for the purpose
of this lab.

1-21

© 2019 Oracle Corporation

Oracle Autonomous Database

• Optionally, you may create Tags. Tagging is a metadata system that allows you to organize
and track resources within your tenancy. Tags are composed of keys and values that can be
attached to resources. More information about Tags and Tag Namespaces is provided in the
OCI Identity and Access Management documentation here.

For lab purposes, you will not create a Tag Namespace.

• Click on Create Autonomous Database to start provisioning the instance.

• You will see the database in Provisioning status as follows:

• Click on Autonomous Database link on the top breadcrumb to go back to Autonomous
Database Home Page.

• Note that the Autonomous Database is in Provisioning state.

https://docs.cloud.oracle.com/iaas/Content/Identity/Concepts/taggingoverview.htm

1-22

© 2019 Oracle Corporation

Oracle Autonomous Database

• In a few minutes, the status will automatically change to Available indicating the database is
ready and provisioned.

STEP 4: Browse to Autonomous Database Details page

• From the Autonomous Database Home Page, click on your instance name that was just
created to browse to Autonomous Database Details Page.

• The Autonomous Database Details Page displays more information about the instance.
Take a note of the various menu buttons that help you manage your autonomous database
instance. Notice the green color of the ATP logo indicating the service is available.

1-23

© 2019 Oracle Corporation

Oracle Autonomous Database

• You have successfully created your first Autonomous Database of type ATP.

1-24

© 2019 Oracle Corporation

Oracle Autonomous Database

Lab 1-3: Connecting to Oracle Autonomous
Database

Oracle Autonomous Database is preconfigured to support Oracle Net Services with secure TCPS
connections which allows the clients to connect using secure client credentials.

This lab will walk you through the steps of connecting to Oracle Autonomous Database using
credentials wallets for secure connections. The tool you will use to connect is Oracle SQL
Developer. You will also perform simple queries to validate the connection.

Objectives

• Download client credentials of autonomous database for secure connectivity.

• Connect to the autonomous database using a secure connection from Oracle SQL Developer.

• Run sample queries to validate the connection.

Required Artifacts

• Please ensure you have already provisioned an Oracle Autonomous Transaction
Processing or an Autonomous Data Warehouse database.

• If you are not using the instructor supplied lab VM, ensure that your laptop/desktop has the
following software installed:

– Oracle SQL Developer (version 18.3 or above)

– A Web browser supported for Oracle Cloud

– Download Lab Support Files from the Lab Setup section

Lab Steps

STEP 1: Sign-In to Autonomous Database Service Console

• Sign in to Oracle Cloud Infrastructure Home Page using the credentials provided and the
instructions from an earlier lab.

• Browse to your Autonomous Database Home Page (either Autonomous Transaction
Processing or Autonomous Data Warehouse), based on what you created in the previous
labs.

https://docs.oracle.com/en/cloud/get-started/subscriptions-cloud/csgsg/web-browser-requirements.html

1-25

© 2019 Oracle Corporation

Oracle Autonomous Database

• From the Autonomous Database Home Page, browse to the Autonomous Database Details
page by clicking on the service name.

• Click on Service Console to sign in to Autonomous Database Service Console.

• Sometimes you may be prompted to Sign In (due to timeout). Fill in the following User and
Password and select Sign In:

– Username: ADMIN

1-26

© 2019 Oracle Corporation

Oracle Autonomous Database

– Password: <Password> specified during ADB provisioning (e.g. WElcome_123#)

Note: The database is initially created with only one user i.e. the ADMIN user.

• You will be placed in the Overview page. Notice there is no activity displayed because this is a
new instance.

• Click on Administration link in the left menu to go to the service Administration page.

1-27

© 2019 Oracle Corporation

Oracle Autonomous Database

• Notice the six options on the Administration page:

– Download a Connection Wallet: This contains the credentials files used for
connectivity to the instance from client applications, tools.

– Set Administrator Password: Used to change the “Admin” account password
Download Oracle.

– Instant Client: Points to different clients that can be used to connect to the database
(like SQL*Plus).

– Set Resource Management Rules: ADB has pre-created resource consumer groups
which are managed here.

– Manage Oracle ML Users: ML Notebook development environment that can be used
with the ADB.

– Send Feedback to Oracle: Email feedback to Oracle.

STEP 2: Download the Client Credentials Wallet

The connection wallet provides a secure authentication method that can be used to connect to
your ADB database. This wallet must be downloaded to the client that will be connecting to the
database.

The wallet is downloaded either from the autonomous database Service Console or the
Administration page within the console.

• From the service Administration page click on Download Client Credentials Wallet.

1-28

© 2019 Oracle Corporation

Oracle Autonomous Database

• On the Download Client Credentials (Wallet) menu, enter a password for the wallet and
click Download.

– Note that this password is separate from the ADMIN user password created earlier
(but the same password can be used).

• Save this file in a secure location. The credentials zip file contains the encryption wallet, Java
Keystore and other relevant files to make a secure TLS 1.2 connection to your database from
client applications.

• Navigate to the location in your system where the file was downloaded (typically your
Downloads directory).

• The format of the file is always Wallet_<dbname>.zip. Extract the contents of the wallet into
a directory (using a zip utility, usually by right clicking on the file), you will find the following
files:

1-29

© 2019 Oracle Corporation

Oracle Autonomous Database

• There are a few files from the list that you will work with during the hands-on labs. Some
tools use the wallet file (.zip) directly whereas some use specific files contained in the wallet.
Here is the description of some of these files:

– Wallet_<dbname>.zip : The wallet.

– sqlnet.ora : Points to the location of the wallet for sqlnet connections.

– tnsnames.ora : Connection description for the database service (please note this file
contains connection description for all the databases that exist in that cloud account).

– ojdbc.properties : Points to the location of the wallet for JDBC connections.

STEP 3: Connect to Autonomous Database using Oracle SQL Developer

Create a connection for your database using the default administrator account, ADMIN, by
following these steps.

• Launch SQL Developer and click Add Connection on top left.

1-30

© 2019 Oracle Corporation

Oracle Autonomous Database

• Enter the following in New database connection

– Connection Name: Name for your connection

– Username: ADMIN

– Password: ADMIN user’s password (e.g. WElcome_123#)

– Save Password: Checked

– Connection Type: Cloud Wallet

– Role: Default

– Configuration File: Click on Browse and select the wallet file you downloaded

– Service: <Database_Name>_TP. The service name is the Database Name followed by
suffix of either TP, TP_URGENT, LOW, MEDIUM, or HIGH. These suffixes determine
degree of parallelism used and are relevant for a DSS workload. For OLTP workloads
it's safe to select any of them.

– In the screenshot below, the <Database_Name> is ATPLab02 and the Service being
connected to is atplab02_tp.

• Test your connection by clicking Test. The Status bar will show Success if it is a successful
connection.

• Save the Connection by clicking Save.

1-31

© 2019 Oracle Corporation

Oracle Autonomous Database

• Click on Connect.

• Upon a successful connection you will see a SQL Developer Worksheet.

Note: If you do not see a Worksheet for your connection, just click the Worksheet drop-down on

the top and select your connection to force open a worksheet.

• Run a test query. The autonomous database you created contains the sample Sales History
(SH) schema, we will use this schema to run a test query to make sure everything is working
correctly.

• Copy the contents of the file /home/oracle/labfiles/select_sql1.sql from the lab
VM (or from a locally downloaded location on your computer) and paste it in the SQL
Worksheet. Below is the SQL that you would be copying.

Note: Do not copy/paste directly from below because sometimes copy/paste from PDF has issues.

SELECT channel_desc,

TO_CHAR(SUM(amount_sold),'9,999,999,999') SALES$,

RANK() OVER (ORDER BY SUM(amount_sold)) AS default_rank,

RANK() OVER (ORDER BY SUM(amount_sold) DESC NULLS LAST) AS custom_rank

FROM sh.sales, sh.products, sh.customers, sh.times, sh.channels,

sh.countries

WHERE sales.prod_id=products.prod_id

AND sales.cust_id=customers.cust_id

AND customers.country_id=countries.country_id

AND sales.time_id=times.time_id

AND sales.channel_id=channels.channel_id

AND times.calendar_month_desc IN ('2000-09','2000-10')

1-32

© 2019 Oracle Corporation

Oracle Autonomous Database

AND country_iso_code='US'

GROUP BY channel_desc;

• Click F5 or the Run Script button. Verify the query executes and results are displayed.

• You have successfully connected SQL Developer to autonomous database and validated the
connection.

2-33

© 2019 Oracle Corporation

Oracle Autonomous Database

2. Data Loading and Integration

2-34

© 2019 Oracle Corporation

Oracle Autonomous Database

Lab 2-1: Loading Data Using SQL Developer
Import Data Wizard

Traditionally transaction processing systems ingest data through routine transactions or DML
operations; Data Warehouses normally perform bulk data loads using Oracle Database tools, and
Oracle or other 3rd party data integration tools.

In general, you load data from files local to your client computer or from files stored in a cloud-
based object store.

Oracle SQL Developer provides the ability to import data into tables in autonomous database or
any version of the Oracle Database using the Import Data Wizard. The import wizard allows you
to import data from a delimited format file or a Microsoft Excel XLS file.

Objectives

• Learn to use the SQL Developer Import Data Wizard.

Required Artifacts

• Please ensure you have provisioned an Oracle Autonomous Transaction Processing or an
Autonomous Data Warehouse database.

• If you are not using the instructor supplied lab VM, ensure that your laptop/desktop has the
following software installed:

– Oracle SQL Developer (version 18.3 or above)

– A Web browser supported for Oracle Cloud

– Download Lab Support Files from the Lab Setup section

Lab Steps

STEP 1: Load a Local File to ADB using SQL Developer

• Start SQL Developer (from your desktop or the lab VM).

• Connect to your autonomous database (ATP or ADW) using the connection configured earlier
and right-click Tables and click Import Data.

https://docs.oracle.com/en/cloud/get-started/subscriptions-cloud/csgsg/web-browser-requirements.html

2-35

© 2019 Oracle Corporation

Oracle Autonomous Database

Note: SQL Developer Import Data Wizard is accessible by right-clicking an existing table on the
database explorer menu, and also by right-clicking on the Tables tree of the database explorer (as
above), where you can import data and also create the table in a one-step operation.

• This will open the Data Import Wizard.

Click Browse and locate channels.csv from the folder /home/oracle/labfiles (or
from a locally downloaded location on your computer). When you select the file, you will see
the file contents on the screen.

2-36

© 2019 Oracle Corporation

Oracle Autonomous Database

• Click Next. In the next screen enter SALES_CHANNELS as the table name that will be created
and the data loaded into.

• Click Next. The next screen allows you to select the columns you want for this table. For this
exercise leave the columns as-is which means the table will have all columns available.

2-37

© 2019 Oracle Corporation

Oracle Autonomous Database

• Click Next. The next screen allows you to look at the data types for each column, which you
can change if there is a need. For this exercise leave the data types as default.

2-38

© 2019 Oracle Corporation

Oracle Autonomous Database

• Click Next. The next page will display a summary for the import operation.

• Click Finish to complete the import wizard and start the data load. When the data load
finishes you will see a message saying the import was completed.

• Your source file is now loaded into the autonomous database. You can run a query on the
table to validate rows returned.

SELECT * FROM SALES_CHANNELS;

2-39

© 2019 Oracle Corporation

Oracle Autonomous Database

• You have successfully loaded data to your autonomous database using Oracle SQL Developer
Data Import Wizard.

2-40

© 2019 Oracle Corporation

Oracle Autonomous Database

Lab 2-2: Loading Data from Object Storage

For the fastest data loading experience Oracle recommends uploading the source files to a cloud-
based object store, such as Oracle Cloud Infrastructure Object Storage, before loading data into
the autonomous database. Oracle also provides support for loading files that are located locally in
your data center (as you have seen in the previous step), but when using this method of data
loading you should factor in the transmission speeds across the Internet which may be
significantly slower.

Objectives

• Learn to upload files to the OCI Object Storage

• Learn to load data from the Object Store into the autonomous database

Required Artifacts

• Please ensure you have provisioned an Oracle Autonomous Transaction Processing or an
Autonomous Data Warehouse database.

• If you are not using the instructor supplied lab VM, ensure that your laptop/desktop has the
following software installed:

– Oracle SQL Developer (version 18.3 or above)

– A Web browser supported for Oracle Cloud

– Download Lab Support Files from the Lab Setup section

Lab Steps

STEP 1: Create an Object Storage Bucket

One of the first steps is to create a Storage Bucket in OCI Object Storage and upload files you
plan on loading to the storage bucket.

Note: In OCI Object Storage, a Bucket is the terminology for a container of multiple files (similar
to a folder).

• Login to your OCI console with the instructions from earlier labs and click on the hamburger
menu on the top-left and select Object Storage -> Object Storage.

https://docs.oracle.com/en/cloud/get-started/subscriptions-cloud/csgsg/web-browser-requirements.html

2-41

© 2019 Oracle Corporation

Oracle Autonomous Database

• To create a new Bucket, select a Compartment from the drop-down (choose your assigned
compartment).

• Click on Create Bucket to create the object storage bucket.

• In the Create Bucket dialog box, enter the following:

– Bucket Name: ATPLabUser<XX> (where <XX> is a unique number that no one has
used)

Ensure that you

select your

assigned

compartment

2-42

© 2019 Oracle Corporation

Oracle Autonomous Database

– Storage Tier: Standard

– Encrypt Using Key Management: Unchecked

• Click on Create Bucket.

Note: Bucket names must be unique within the namespace and cannot be nested. The name
cannot be changed from the Console. The name can contain letters, numbers, dashes, and periods.
Buckets do not have Oracle-assigned Oracle Cloud Identifiers (OCIDs).

STEP 2: Upload the Customers Sample Data File

You can now upload the customers.csv file to the bucket.

• Click on your bucket name to view details:

• You will be presented the Bucket Details page.

2-43

© 2019 Oracle Corporation

Oracle Autonomous Database

• Click on the Upload Object button.

• Use the Browse button to locate the customers.csv file located in
/home/oracle/labfiles folder in the lab VM (or from a locally downloaded location on
your computer).

Note: Alternatively, you may also drag-and-drop the file into this pane.

• Select the customers.csv file and click Open.

2-44

© 2019 Oracle Corporation

Oracle Autonomous Database

• Click Upload Object

• Once the file is uploaded, it will be listed under Objects as follows:

STEP 3: Construct the URL of the File

Construct the URL that points to the location of the customers.csv file staged in the OCI Object
Storage. The URL is structured as follows. The values for you to specify are in bold:

https://swiftobjectstorage.<region_name>.oraclecloud.com/v1/<tenant_name>/<bucket_n
ame>/<file_name>

• region_name : The region you have created the Object Storage Bucket (i.e. the Region
supplied to you by the instructor). Typically, this would be us-phoenix-1, us-ashburn-1, etc.

• tenant_name : The Tenant name supplied to you by the instructor (in lower case)

• bucket_name : The bucket name

2-45

© 2019 Oracle Corporation

Oracle Autonomous Database

• file_name : customers.csv

The below example of the constructed URL, the region name is us-phoenix-1, the tenant name is
oraclepartnersas, and the bucket name is ATPLabUser03, hence the URL of the customers.csv
file is:

https://swiftobjectstorage.us-phoenix-
1.oraclecloud.com/v1/oraclepartnersas/ATPLabUser03/customers.csv

• Your URL would be different, so please modify accordingly and Save the URL to a notepad.
We will use this URL at a later step.

STEP 4: Generate an Auth Token

An Auth Token is an Oracle-generated token string that you can use to authenticate with third-
party APIs that do not support Oracle Cloud Infrastructure's signature-based authentication. For
example, use an Auth Token to authenticate with a Swift client with the Object Storage Service.

The auth token is associated with the user's Console login. Auth tokens never expire. A user can
have up to two auth tokens at a time.

Note: The token is always an Oracle-generated string and you can't change it to a string of your
choice.

• Your instructor may have pre-generated an Auth Token for your OCI login. This will be the
case when you are sharing the login with other students.

• To check if the Auth Token has been generated. Start a Terminal session in the lab VM.

• Check the contents of auth_token.txt file. If it is seeded with a value, then you would use this
as the Auth Token in the later steps.

$ cat ~/labs/keys/auth_token.txt

Auth Token

STOP!

If you have located the Auth Token from the above steps, skip the remaining instructions
and proceed directly to Step 5.

2-46

© 2019 Oracle Corporation

Oracle Autonomous Database

• If the Auth Token has not been generated for you, create a new auth token as follows:

• In the top-right corner of the Console, open the User menu and then click User Settings
to view the details.

• Click on Auth Tokens under Resources.

• On the Auth Tokens page, click Generate Token. Note that you can only have two Auth
Tokens and you need to delete an existing one before generating another one.

• Enter a friendly description for the auth token. Avoid entering confidential information.

2-47

© 2019 Oracle Corporation

Oracle Autonomous Database

• Click Generate Token. The new auth token is displayed.

• Copy the auth token immediately to a secure location from where you can retrieve it later,
because you won't see the auth token again in the Console.

• Close the Generate Token dialog.

STEP 5: Create Database Credential

Create a database credential object that holds the credentials of the object store (i.e. where your
data is staged). The credential information is stored encrypted in the database and only usable for
your user schema.

• Open SQL Developer and connect to your autonomous database as the ADMIN user.

• In the worksheet, run the following CREATE_CREDENTIAL statement to create the
WORKSHOP_CREDENTIAL credential object while replacing the <Auth Token> with the
values from the previous step. Also, the <OCI Lab User> is the OCI User that you used to sign-
in to the OCI Console (NOT the ADMIN user).

Note: Run the following SQL statements by selecting them both and executing them using Run
Script (F5)

SET DEFINE OFF;
BEGIN
 DBMS_CLOUD.create_credential(
 credential_name => 'WORKSHOP_CREDENTIAL',
 username => '<OCI Lab User>',
 password => '<Auth Token>');
END;

<OCI Lab User> is

the OCI user provided

to you by the

instructor.

2-48

© 2019 Oracle Corporation

Oracle Autonomous Database

• Verify the credential object got successfully created.

• Now you are ready to load data from the Object Store using the credentials just created.

STEP 6: Load Data from the Object Store to the Autonomous Database

Autonomous database provides a new PL/SQL package called DBMS_CLOUD to load data from
files from the cloud storage into your database. The DBMS_CLOUD package supports loading data
files from the following Cloud sources: Oracle Cloud Infrastructure Object Storage, Oracle Cloud
Infrastructure Object Storage Classic and Amazon AWS S3.

• The COPY_DATA procedure of DBMS_CLOUD package requires that target tables must
already exist in your autonomous database.

• Connect as the ADMIN user in SQL Developer and create the target CUSTOMERS table.

• Copy the table creation DDL from the file
/home/oracle/labfiles/create_customers.sql (or from a locally downloaded
location on your computer).

DROP TABLE customers;

CREATE TABLE customers (

cust_id NUMBER NOT NULL,

cust_first_name VARCHAR2(20) NOT NULL,

cust_last_name VARCHAR2(40) NOT NULL,

cust_gender CHAR(1) NOT NULL,

cust_year_of_birth NUMBER(4) NOT NULL,

cust_marital_status VARCHAR2(20),

cust_street_address VARCHAR2(40) NOT NULL,

cust_postal_code VARCHAR2(10) NOT NULL,

cust_city VARCHAR2(30) NOT NULL,

cust_city_id NUMBER NOT NULL,

cust_state_province VARCHAR2(40) NOT NULL,

cust_state_province_id NUMBER NOT NULL,

country_id NUMBER NOT NULL,

cust_main_phone_number VARCHAR2(25) NOT NULL,

cust_income_level VARCHAR2(30),

2-49

© 2019 Oracle Corporation

Oracle Autonomous Database

cust_credit_limit NUMBER,

cust_email VARCHAR2(50),

cust_total VARCHAR2(14) NOT NULL,

cust_total_id NUMBER NOT NULL,

cust_src_id NUMBER,

cust_eff_from DATE,

cust_eff_to DATE,

cust_valid VARCHAR2(1));

ALTER TABLE customers ADD CONSTRAINT customers_pk PRIMARY KEY (cust_id);

• Verify the table was successfully created (ignore the ORA-00942 during DROP).

• Now run the DBMS_CLOUD.COPY_DATA procedure to copy the data staged in your object
store to your autonomous database tables.

• Modify the SQL provided below by replacing the highlighted values as appropriate:

– table_name : CUSTOMERS

– credential_name : WORKSHOP_CREDENTIAL

– file_uri_list : <your_file_uri_list> => This is the URL you saved earlier in Construct the
URL of the File section.

begin

dbms_cloud.copy_data(

table_name=>'CUSTOMERS',

credential_name=>'WORKSHOP_CREDENTIAL',

file_uri_list=>'<your_file_uri_list>',

format=>json_object('ignoremissingcolumns' value 'true','removequotes' value 'true',

'dateformat' value 'YYYY-MM-DD HH24:MI:SS','blankasnull' value 'true')

);

end;

/

• Execute the above PL/SQL block and verify the COPY_DATA was successful.

2-50

© 2019 Oracle Corporation

Oracle Autonomous Database

STEP 7: Verify the Data Loads

• Query the CUSTOMERS table and validate rows loaded:

SELECT * FROM CUSTOMERS;

• Data loads performed by DBMS_CLOUD are logged in the following dictionary tables:

– DBA_LOAD_OPERATIONS : Shows all load operations.

– USER_LOAD_OPERATIONS : Shows the load operations in your schema.

• Query thee above tables to see information about ongoing and completed data loads. For
example:

2-51

© 2019 Oracle Corporation

Oracle Autonomous Database

SELECT table_name, status, rows_loaded, logfile_table, badfile_table

FROM user_load_operations WHERE type = 'COPY';

• Examine the results. The log and bad files are accessible as tables.

TABLE_NAME STATUS ROWS_LOADED LOGFILE_TABLE BADFILE_TABLE
---------- ------------ ----------- ------------- -------------
CUSTOMERS COMPLETED 55500 COPY$1_LOG COPY$1_BAD

• Validate using LOGFILE_TABLE and BADFILE_TABLE (COPY$1_LOG and COPY$1_BAD from
above).

SELECT * FROM copy$1_log;

SELECT * FROM copy$1_bad;

• You have successfully loaded data to your autonomous database using the Object Storage.

2-52

© 2019 Oracle Corporation

Oracle Autonomous Database

Lab 2-3: Loading Data Using SQL Loader

You can use Oracle SQL Loader to load data from local files on your client machine to the
autonomous database.

Note: SQL Loader may be suitable for loading small volumes of data, as the load performance
depends on the network bandwidth between your client and the ADB. For large data loads, Oracle
recommends loading data from the OCI Object Storage.

Objectives

• Generate SQL*Loader scripts using SQL Developer

• Load a Local CSV file to the autonomous database using SQL Loader scripts

Required Artifacts

• Please ensure you have provisioned an Oracle Autonomous Transaction Processing or an
Autonomous Data Warehouse database.

• This lab needs to be completed using the lab VM.

• Ensure that you have previously downloaded the secure credentials wallet to ~/Downloads
directory

Lab Steps

STEP 1: Generate SQL Loader Scripts Using SQL Developer

SQL Loader requires a control file that specifies the data definition and structure of input data. You
may manually create the control file or use Oracle SQL Developer to generate them. We will use
the latter method of control file generation in this lab.

• Sign in to the lab VM with the login credentials provided to you by the instructor.

• From the lab VM, start SQL Developer and connect to your autonomous database as the
ADMIN user.

Note: You may use an existing connection from a previous lab.

2-53

© 2019 Oracle Corporation

Oracle Autonomous Database

• In the left pane, right-click Tables and select Import Data.

• The Data Import wizard will pop-up. Click Browse and locate the orders.csv file from
/home/oracle/labfiles (or from a locally downloaded location on your computer) and
click Open.

2-54

© 2019 Oracle Corporation

Oracle Autonomous Database

• Uncheck the Preview Row Limit and ensure the Delimiter is “,” and click Next.

• In the Import Method choose SQL Loader Utility. Enter a table name where you like the data
to be loaded, e.g. ORDERS.

Note: The Table need not be pre-created at this time. The Create Table DDL will be generated as
a part of this process and you can run it to create the table.

2-55

© 2019 Oracle Corporation

Oracle Autonomous Database

• Ensure that Send Create Script to SQL Worksheet is Checked. Click Next.

• The next screen allows you to select the columns you like to include as part of the load and
also as part of the table column list for the DDL. For this lab, keep all settings as default, the
effect of which is to include all columns. Click Next.

• This screen allows you to set SQL Loader options. For this exercise just note the location
where the scripts will be generated. Leave the rest of the options as default. Click Next.

2-56

© 2019 Oracle Corporation

Oracle Autonomous Database

• On the summary screen, click Finish.

• A new SQL Worksheet is created with the create table DDL command.

2-57

© 2019 Oracle Corporation

Oracle Autonomous Database

• Execute the Create Table script. Click F5 or the Run Script button.

• You will be presented with Select a Connection dialog. Ensure that it points to the right
autonomous database connection and click OK.

• Verify the table creation was successful.

2-58

© 2019 Oracle Corporation

Oracle Autonomous Database

• Scroll to the bottom of the Worksheet and note the location of the generated scripts.

• Note that your scripts were generated in /home/oracle/Downloads folder.

STEP 2: Setup Oracle Client to Connect using the Wallet

• Start a Terminal session in the lab VM.

• Unzip the Credential Wallet zip file that was downloaded earlier to the ~/wallets folder. The
below example assumes that the full path to your downloaded wallet zip file is
<your_wallet_file.zip>.

$ unzip <your_wallet_file.zip> -d ~/wallets

Note: If prompted to replace existing files in ~/wallets folder, enter [y]es for all.

2-59

© 2019 Oracle Corporation

Oracle Autonomous Database

• Copy the tnsnames.ora file from your wallet folder to $ORACLE_HOME/network/admin.

$ cp ~/wallets/tnsnames.ora $ORACLE_HOME/network/admin

Note: In a real-world scenario, you would want to append the entries from the wallet's
tnsnames.ora file to $ORACLE_HOME/network/admin/tnsnames.ora, not overwrite it as you
just did.

• Verify connectivity to your ADB service using sqlplus. The <ADB_Service_Name> in the
below example is one of the predefined service names of your ADB sevice (e.g. _high, _tp,
_low, etc.)

$ sqlplus ADMIN@<ADB_Service_Name>

• Provide your ADMIN password and verify that you were able to connect successfully.

• Exit from the SQL Plus session.

SQL> EXIT;

2-60

© 2019 Oracle Corporation

Oracle Autonomous Database

STEP 3: Run the Generated SQL Loader Scripts

Let's use the generated scripts from the previous step to load data using SQL Loader.

• In the Terminal window, change directory to ~/Downloads as this was the location of the
generated scripts.

$ cd ~/Downloads

• Make the orders.sh file executable as by default it is not.

$ chmod +x orders.sh

• Staying in the ~/Downloads folder, run the orders.sh script to start the SQL Loader process.

$./orders.sh

• When prompted, enter your Username (i.e. the ADMIN user) and the database Password.
Ensure that you specify the TNS Alias (i.e. the connect string) of your service along with the
username follows:

ADMIN@<YourConnect_String>

• Verify that the file gets loads successfully.

2-61

© 2019 Oracle Corporation

Oracle Autonomous Database

• Also verify the load using SQL Worksheet and running the following COUNT(*) query:

SELECT COUNT(*) FROM ORDERS;

• You have successfully completed this lab.

3-62

© 2019 Oracle Corporation

Oracle Autonomous Database

3. Migrating to the Autonomous
Database

3-63

© 2019 Oracle Corporation

Oracle Autonomous Database

Lab 3-1: Migrating to Autonomous Database
using Data Pump

Oracle Data Pump offers a very fast and easy method for moving data and metadata between
Oracle Databases, including the Oracle Autonomous Database.

Data Pump Import is a utility for loading an export dump file into a target system, using a dump
file previously exported using Data Pump Export.

Data Pump Import lets you import data from Data Pump files residing on the Oracle Cloud
Infrastructure Object Storage, Oracle Cloud Infrastructure Object Storage Classic, and AWS S3. You
can save your data to your Cloud Object Store and use Oracle Data Pump to load data to the
autonomous database.

Objectives

• Use SQL Plus to connect to the ADB Service to validate Oracle Client installation and
credential setup.

• Use Data Pump Import to import a previously exported schema dump into the ADB.

Required Artifacts

• Please ensure you have provisioned an Oracle Autonomous Transaction Processing or an
Autonomous Data Warehouse database.

• Ensure that the Object Storage Bucket and the Database Credential object was created
from the earlier labs.

• This lab needs to be completed using the lab VM.

Lab Steps

STEP 1: Setup Oracle Client to Connect using the Wallet

IMPORTANT: If you have completed Loading Data using SQL Loader lab, proceed directly to
STEP 2.

• Sign in to the lab VM with the login credentials provided to you by the instructor.

• Start a Terminal session in the lab VM.

3-64

© 2019 Oracle Corporation

Oracle Autonomous Database

• Unzip the Credential Wallet zip file that was downloaded earlier to the ~/wallets folder. The
below example assumes that the full path to your downloaded wallet zip file is
<your_wallet_file.zip>.

$ unzip <your_wallet_file.zip> -d ~/wallets

Note: If prompted to replace existing files in ~/wallets folder, enter [y]es for all.

• Copy the tnsnames.ora file from your wallet folder to $ORACLE_HOME/network/admin.

$ cp ~/wallets/tnsnames.ora $ORACLE_HOME/network/admin

Note: In a real-world implementation, you would want to append the entries from the wallet's
tnsnames.ora file to $ORACLE_HOME/network/admin/tnsnames.ora, not overwrite it.

• Verify connectivity to your ADB service using sqlplus. The <ADB_Service_Name> in the
below example is one of the predefined service names of your ADB sevice (e.g. _high, _tp,
_low, etc.)

$ sqlplus ADMIN@<ADB_Service_Name>

• Provide your ADMIN password and verify that you were able to connect successfully.

3-65

© 2019 Oracle Corporation

Oracle Autonomous Database

• Exit from the SQL Plus session.

SQL> EXIT;

STEP 2: Upload the Data Pump Export File to the Object Storage Bucket

Follow the steps below to upload the soe_export.dmp file to the Object Storage bucket created in
one of the earlier labs.

• Login to your OCI console, click on the hamburger menu on the top-left and select Object
Storage -> Object Storage.

• Locate the bucket you created earlier. Click on your bucket name to open Bucket Details.

3-66

© 2019 Oracle Corporation

Oracle Autonomous Database

• On the Bucket Details page click on the Upload Object button.

• Use the Browse button to locate the soe_export.dmp file from
/home/oracle/labfiles directory, select the file and click on Open. Alternatively, you
may also drag-and-drop the file into this pane.

• Once the file is uploaded, it will be listed under Objects as follows:

• Construct the URL of soe_export.dmp file. The URL is structured as follows :

https://swiftobjectstorage.<region_name>.oraclecloud.com/v1/<tenant_name>/<bucket_n
ame>/<file_name>

• region_name : The region you have created your Object Storage bucket. Typically, this would
be us-phoenix-1, us-ashburn-1, etc.

• tenant_name : <OCI Tenancy Name>

3-67

© 2019 Oracle Corporation

Oracle Autonomous Database

• bucket_name : <Object Storage Bucket Name>

• file_name : soe_export.dmp

• In the example URL below, the region name is us-phoenix-1, tenant name is
oraclepartnersas, bucket name is ATPLabUser03, and finally, the file name is
soe_export.dmp.

https://swiftobjectstorage.us-phoenix-
1.oraclecloud.com/v1/oraclepartnersas/ATPLabUser03/soe_export.dmp

• Your URL would be different, so please modify accordingly.

STEP 3: Importing Data Using Oracle Data Pump

In this step you will import the soe_export.dmp file from the Oracle Object Storage into the ADB.

• Go back to your Terminal session in the Lab VM.

• Invoke the Data Pump command using the following command line, replacing
<Your_Admin_Password>, <Your_Connect_String> and <SOE_Export_File_URL> as
appropriate (Hint: You just built <SOE_Export_File_URL> in the previous step).

$ impdp userid=ADMIN/<Your_Admin_Password>@<Your_Connect_String>

credential=WORKSHOP_CREDENTIAL schemas=SOE directory=DATA_PUMP_DIR

dumpfile=<SOE_Export_File_URL> logfile=DATA_PUMP_DIR:soe_import.log

• This will start the import process. Verify the import output is similar to the following (ignore
the ORA-39082 and ORA-31685 errors):

[oracle@abdlab000 Downloads]$ impdp userid=ADMIN/*******@ATPLab99_TP

credential=WORKSHOP_CREDENTIAL schemas=SOE directory=DATA_PUMP_DIR

dumpfile=https://swiftobjectstorage.us-ashburn-

1.oraclecloud.com/v1/showitbuildit1/USER99/soe_export.dmp

logfile=DATA_PUMP_DIR:soe_import.log

Import: Release 18.0.0.0.0 - Production on Sun Jan 20 04:40:36 2019

Version 18.3.0.0.0

Copyright (c) 1982, 2018, Oracle and/or its affiliates. All rights reserved.

Connected to: Oracle Database 18c Enterprise Edition Release 18.0.0.0.0 – Production

Master table "ADMIN"."SYS_IMPORT_SCHEMA_01" successfully loaded/unloaded

Starting "ADMIN"."SYS_IMPORT_SCHEMA_01": userid=ADMIN/********@ATPLab99_TP

credential=WORKSHOP_CREDENTIAL schemas=SOE directory=DATA_PUMP_DIR

dumpfile=https://swiftobjectstorage.us-ashburn-

1.oraclecloud.com/v1/showitbuildit1/USER99/soe_export.dmp

logfile=DATA_PUMP_DIR:soe_import.log

Processing object type SCHEMA_EXPORT/USER

Processing object type SCHEMA_EXPORT/SYSTEM_GRANT

ORA-31685: Object type SYSTEM_GRANT:"SOE"."MANAGE SCHEDULER" failed due to insufficient

privileges. Failing sql is:

GRANT MANAGE SCHEDULER TO "SOE"

Processing object type SCHEMA_EXPORT/ROLE_GRANT

Processing object type SCHEMA_EXPORT/DEFAULT_ROLE

Processing object type SCHEMA_EXPORT/TABLESPACE_QUOTA

Processing object type SCHEMA_EXPORT/PASSWORD_HISTORY

Processing object type SCHEMA_EXPORT/PRE_SCHEMA/PROCACT_SCHEMA

3-68

© 2019 Oracle Corporation

Oracle Autonomous Database

Processing object type SCHEMA_EXPORT/SEQUENCE/SEQUENCE

Processing object type SCHEMA_EXPORT/TABLE/TABLE

Processing object type SCHEMA_EXPORT/TABLE/TABLE_DATA

. . imported "SOE"."INVENTORIES" 15.15 MB 894904 rows

. . imported "SOE"."ADDRESSES" 32.86 MB 450000 rows

. . imported "SOE"."LOGON" 14.95 MB 714896 rows

. . imported "SOE"."ORDER_ITEMS" 68.00 MB 1283887 rows

. . imported "SOE"."PRODUCT_DESCRIPTIONS" 220.2 KB 1000 rows

. . imported "SOE"."ORDERS" 38.46 MB 428938 rows

. . imported "SOE"."ORDERENTRY_METADATA" 5.609 KB 4 rows

. . imported "SOE"."PRODUCT_INFORMATION" 188.1 KB 1000 rows

. . imported "SOE"."CARD_DETAILS" 19.01 MB 450000 rows

. . imported "SOE"."WAREHOUSES" 35.66 KB 1000 rows

. . imported "SOE"."CUSTOMERS" 32.23 MB 300000 rows

Processing object type SCHEMA_EXPORT/PACKAGE/PACKAGE_SPEC

Processing object type SCHEMA_EXPORT/PACKAGE/COMPILE_PACKAGE/PACKAGE_SPEC/ALTER_PACKAGE_SPEC

Processing object type SCHEMA_EXPORT/VIEW/VIEW

Processing object type SCHEMA_EXPORT/PACKAGE/PACKAGE_BODY

Processing object type SCHEMA_EXPORT/TABLE/INDEX/INDEX

Processing object type SCHEMA_EXPORT/TABLE/INDEX/FUNCTIONAL_INDEX/INDEX

Processing object type SCHEMA_EXPORT/TABLE/CONSTRAINT/CONSTRAINT

Processing object type SCHEMA_EXPORT/TABLE/INDEX/STATISTICS/INDEX_STATISTICS

Processing object type SCHEMA_EXPORT/TABLE/INDEX/STATISTICS/FUNCTIONAL_INDEX/INDEX_STATISTICS

Processing object type SCHEMA_EXPORT/TABLE/CONSTRAINT/REF_CONSTRAINT

Processing object type SCHEMA_EXPORT/TABLE/STATISTICS/TABLE_STATISTICS

Processing object type SCHEMA_EXPORT/STATISTICS/MARKER

Processing object type SCHEMA_EXPORT/POST_SCHEMA/PROCACT_SCHEMA

ORA-39082: Object type PACKAGE BODY:"SOE"."ORDERENTRY" created with compilation warnings

Job "ADMIN"."SYS_IMPORT_SCHEMA_01" completed with 2 error(s) at Sun Jan 20 04:44:19 2019

elapsed 0 00:03:06

[oracle@abdlab000 Downloads]$

STEP 4: Verify Import Logs

The log files for Data Pump Import operations are stored in the directory DATA_PUMP_DIR; this is
the only directory you can specify for the data pump directory parameter.

To access the log file, you would first need to copy the file to your Cloud Object Storage using the
procedure DBMS_CLOUD.PUT_OBJECT and then download it from the Object Storage.

• Start a SQL Plus session and run the following PL/SQL block, replacing <region_name> with
your Region, <tenant_name> with your Tenant and <bucket_name> with the name of your
cloud storage Bucket:

BEGIN

DBMS_CLOUD.PUT_OBJECT(

credential_name=>'WORKSHOP_CREDENTIAL',

object_uri=>'https://swiftobjectstorage.<region_name>.oraclecloud.com/v1/<te

nant_name>/<bucket_name>/soe_import.log', directory_name=>'DATA_PUMP_DIR',

file_name=>'soe_import.log');

END;

/

3-69

© 2019 Oracle Corporation

Oracle Autonomous Database

• Verify that the import.log file was copied to the bucket. Go to the Bucket Details page and
locate soe_import.log (Hint: You may have to refresh the page).

• Download the import log by clicking on the elipses (...) and selecting Download as follows:

• View the file in your favorite editor.

3-70

© 2019 Oracle Corporation

Oracle Autonomous Database

• You have now successfully migrated a database to ADB using Oracle Data Pump.

4-71

© 2019 Oracle Corporation

Oracle Autonomous Database

4. Developing Applications with
Autonomous Database

4-72

© 2019 Oracle Corporation

Oracle Autonomous Database

Lab 4-1: Building Node.js Applications with ADB

Node.js is an open source, cross-platform runtime environment for building mid-tier and
networking applications using the popular JavaScript language.

The node-oracledb add-on for Node.js powers high performance Oracle Database applications.
The node-oracledb driver connects to Oracle Database for fast and functional applications. It is an
open source project with Apache 2.0 license. It is maintained by Oracle and is under active
development.

The objective of this lab is to get a Node.js environment running in your lab VM that is capable of
connecting and running database operations against the Oracle Autonomous Database. Javascript
is a very popular language with developers and it's not our objective to teach coding in Javascript,
rather to emphasize that Oracle Autonomous Database supports working with Javascript.

Objectives

• Learn to connect a Node.js application to the Oracle ADB database.

• Run the supplied example applications that selects data from the Oracle Autonomous
Database using Node.js.

Required Artifacts

• A previously provisioned Oracle Autonomous Database, either Autonomous Transaction
Processing or Autonomous Data Warehouse.

• Ensure that you have setup the Oracle Client to connect using the Wallet, using instructions
from Migrating to Autonomous Database using Oracle Data Pump lab or Loading Local
Data Files using SQL Loader lab.

• Access to a lab VM with the following software preinstalled:

– Oracle Instant Client 18c (or the full Client)

– Node.js

– Node.js libraries: oracledb, async, app, express

Lab Steps

STEP 1: Validate Node.js Environment

The lab VM is preinstalled with the required software to run Node.js applications that connects to
Oracle and to the autonomous database. In this step you would validate the lab environment
configuration.

• Login to the lab VM and open a new Terminal window.

4-73

© 2019 Oracle Corporation

Oracle Autonomous Database

• Run the following commands to verify Node.js installation:

$ node --version

$ npm --version

• The above commands will print the version of node and npm (Node Package Manager)
installed and they should match the output below:

• Also check if oracledb, app, and async packages are installed by running the following npm
commands and checking for errors:

$ npm view oracledb

$ npm view app

$ npm view async

Note: The app package provides the microservices application framework for Node.js, whereas
async provides higher order functions and common patterns for running asynchronous code.

• Once you have checked the installations, let's try building our first hello world node
application.

• Change directory to ~/labs/node.

$ cd ~/labs/node

• Copy the app.js file from /home/oracle/labfiles.

$ cp ~/labfiles/app.js .

• Using gedit or your favorite editor browse the app.js file.

const http = require('http');

const hostname = '127.0.0.1';

const port = 3000;

const server = http.createServer((req, res) => {

 res.statusCode = 200;

 res.setHeader('Content-Type', 'text/plain');

4-74

© 2019 Oracle Corporation

Oracle Autonomous Database

 res.end('Hello World\n');

});

server.listen(port, hostname, () => {

 console.log(`Server running at http://${hostname}:${port}/`);

});

• Run your app.js application using "node app.js" command as follows (it is important that
you stay in the ~/labs/node directory):

$ node app.js

• Now, point your browser to http://localhost:3000, and you should see the Hello World
message.

• Ensure the above test is successful. Stop the Node.js application by clicking CTRL-C and
proceed to the next step.

STEP 2: Validate Connectivity to ADB Using Node.js

The credential wallet files downloaded in the earlier labs will be used to connect a sample Node.js
application to the autonomous database.

• If you have not completed Migrating to ADB Using Data Pump lab, please complete at least
the Setup Oracle Client to Connect using the Wallet step.

• Next, create a file that will store the ADB database credentials. Other node.js scripts will
include this file and use it to initiate the connection to ADB.

• Ensure you are in directory ~/labs/node.

$ cd ~/labs/node

• Using your favorite editor, create a file named dbconfig.js with the following contents:

4-75

© 2019 Oracle Corporation

Oracle Autonomous Database

module.exports= {

dbuser: '<ADMIN_User>',

dbpassword: '<ADMIN_Password>',

connectString: '<ADB_Service>'

}

• In the above file replace the following:

– <ADMIN_User> : ADMIN

– <ADMIN_Password> : <Your ADMIN Password>

– <ADB_Service> : <Your ADB Service Name>

• Next, we need to test the connectivity to ADB. Let's use a pre-built node.js application that
will connect to the ADB database, and if successful, will display the username that was used to
connect to the database on a browser at URL http://localhost:3050/.

• Copy the connectadb.js file from /home/oracle/labfiles.

$ cp ~/labfiles/connectadb.js .

• Open the connectadb.js file using your favorite editor. Note the first few lines in the file
includes Node.js libraries like oracledb and http. It also includes the previously defined
dbconfig.js script which holds the database credentials.

• To run the above code, at the command prompt and staying in the same folder as
connectadb.js, run the following command:

$ node connectadb.js

• You should see the following output:

• Go to your browser and to the URL http://localhost:3050/ and observe the output is as
expected.

• If the above test is successful, stop the node.js application by hitting CTRL-C and proceed to
the next step.

4-76

© 2019 Oracle Corporation

Oracle Autonomous Database

STEP 3: Build a Node.js Application to Select Data from ADB

Let's build a Node.js application that will login to ADB, execute a simple SELECT query, and print
the data returned on the terminal.

• Copy the adbselect.js file from /home/oracle/labfiles.

$ cp ~/labfiles/adbselect.js .

• Open the adbselect.js file in your favorite editor and note the library calls at the beginning
and some Oracle specific calls such as connection.execute and doRelease.

• To run the above code, at the command prompt and staying in the same folder as
adbselect.js, run the following command:

$ node adbselect.js

• Observe the results and note that CUST_ID returned below is 5993, as it was part of the
WHERE clause supplied in the select query above.

STEP 4: Build a Node.js Application to Select Data from ADB

In this step you will build on the previous steps and manipulate JSON data into Oracle Objects for
updating, analysis, inserts and deletes from the database.

• Copy the adbselectjson.js file from /home/oracle/labfiles.

$ cp ~/labfiles/adbselectjson.js .

• Inspect adbselectjson.js application using your favorite editor.

• To run the script, at the command prompt and staying in the same folder as adbselectjson.js,
run the following command:

$ node adbselectjson.js

• Observe the results.

4-77

© 2019 Oracle Corporation

Oracle Autonomous Database

• The output will show output of the several JSON manipulation functions that were defined in
the code. Please review the code to see what the different functions do.

• You have completed all steps of this lab. Again, the objective was to set up a working node.js
environment with sample code that can be deployed against an ADB database and we have
successfully demonstrated how that is done.

4-78

© 2019 Oracle Corporation

Oracle Autonomous Database

Lab 4-2: Building Microservices with Docker

Containers allow us to package applications along with all their dependencies and provide a light-
weight run time environment that provides isolation similar to a virtual machine, but without the
added overhead of a full-fledged operating system.

The topic of containers and microservices is a subject on its own but suffice to say that breaking
up large, complex software into more manageable pieces that run isolated from each other has
many advantages. It's easier to deploy, diagnose and provides better availability since failure of
any microservice limits downtime to a portion of the application.

It's important to have a similar strategy in the backend for the database tier. But the issue is if you
run multiple databases for each application then you end up having to maintain a large fleet of
databases and the maintenance costs can go through the roof. Add to that having to manage
security and availability for all of them.

This is where the Oracle’s autonomous database cloud service comes in. It is based on a pluggable
architecture similar to application containers where one container database holds multiple
pluggable databases. Each of these pluggable databases or PDBs are completely isolated from each
other, can be deployed quickly and can be managed as a whole so that you incur the cost of
managing a single database while deploying multiple micro services onto these PDBs.

The Autonomous cloud service takes it a step further. It is self-managing, self-securing and highly
available. There is no customer involvement in backing it up, patching it or even tuning it for most
part. You simply provision, connect and run your applications.

4-79

© 2019 Oracle Corporation

Oracle Autonomous Database

Objectives

• Build a docker container that runs node.js microservices.

• Configure the microservice to use an Oracle Autonomous Transaction Processing Database.

Required Artifacts

• A previously provisioned Oracle Autonomous Database, either Autonomous Transaction
Processing or Autonomous Data Warehouse.

• A previously downloaded Client credential wallet of your autonomous database.

• A lab VM with the Docker Container platform preinstalled and a downloaded Oracle Instant
Client zip file.

Lab Steps

STEP 1: Download and Configure the Sample Microservice Application

A sample microservice application for an online marketplace use case (i.e. buy/sell products) has
been prebuilt for this lab. The application is named aone and it is a node.js app and requires a
database schema with seed data to be deployed in an Oracle Database.

In this step, you will download and configure the sample application, readying it to be deployed in
the docker container.

• Login to the lab VM and start a Terminal session.

4-80

© 2019 Oracle Corporation

Oracle Autonomous Database

• Change directory to ~/labs/docker

$ cd ~/labs/docker

• Copy the sample docker microservice application named ATPDocker from
/home/oracle/labfiles directory.

$ cp ~/labfiles/ATPDocker.tar .

• Run the following tar command to extract the application source in the ~/labs/docker
folder:

$ tar xzvf ATPDocker.tar

• Extract the previously downloaded credentials wallet zip file of your ATP service to
~/labs/docker/ATPDocker/wallet_NODEAPPDB2 folder, using the following unzip
command, replacing <Path_to_Your_Wallet_Zip> and <Wallet_Zip_File>.zip with the path and
the name of your credentials wallet zip file, respectively.

Note: Ensure that you use the same folder names/structure as above as the application is
configured to run with those values.

$ unzip <Path_to_Your_Wallet_Zip>/<Wallet_Zip_File>.zip -d

~/labs/docker/ATPDocker/wallet_NODEAPPDB2/

• Edit sqlnet.ora in ~/labs/docker/ATPDocker/wallet_NODEAPPDB2 folder:

$ cd ~/labs/docker/ATPDocker/wallet_NODEAPPDB2/

$ gedit sqlnet.ora

• Replace the contents of the file with the following text. This tells the driver to look for the
wallet in the path setup in variable TNS_ADMIN. the file and exit ().

WALLET_LOCATION = (SOURCE = (METHOD = file) (METHOD_DATA =
(DIRECTORY=$TNS_ADMIN)))

4-81

© 2019 Oracle Corporation

Oracle Autonomous Database

• Copy the previously downloaded Oracle Instant Client from ~/Downloads/instantclient-
basic-linux.x64-12.1.0.2.0.zip to ~/labs/docker/ATPDocker folder. The Oracle Instant
Client will be installed in the Docker container during container instantiation.

$ cp ~/Downloads/instantclient-*.zip ~/labs/docker/ATPDocker/

• The dbconfig.js file located in ~/labs/docker/ATPDocker/aone/scripts holds the ATP
database user, password and the TNS Alias of the ATP service, which is used by the aone
application.

• Edit the dbconfig.js file and replace the <User>, <Password>, and <ATP_TP_Alias>, as
appropriate, with the info related to your ATP service.

$ gedit ~/labs/docker/ATPDocker/aone/scripts/dbconfig.js

module.exports= {
user:"<User>",
password:"<Password>",
connectString :"<ATP_TP_Alias>"
}

STEP 2: Create the Application Schema

The SQL script to create the schema for aone application is in the
/home/oracle/labs/docker/ATPDocker/aone/create_schema.sql

• Configure the TNS_ADMIN variable to enable SQL Plus to connect to your ATP service.

$ export TNS_ADMIN=~/labs/docker/ATPDocker/wallet_NODEAPPDB2

• Connect to the ATP Service using SQL Plus and run the create_schema.sql script to create the
schema objects, replacing the <User>, <Password>, and <ATP_TP_Alias>, as appropriate.

$ cd ~/labs/docker/ATPDocker/aone/

$ sqlplus <User>/<Password>@<ATP_TP_Alias> @create_schema.sql

• Verify the objects were created and exit from the SQL Plus session.

$ sqlplus ADMIN/******@ATPLab06_TP @create_schema.sql

SQL*Plus: Release 18.0.0.0.0 - Production on Sun Jan 6 14:19:20 2019
Version 18.3.0.0.0

Copyright (c) 1982, 2018, Oracle. All rights reserved.

Last Successful login time: Wed Jan 09 2019 19:21:19 -06:00

Connected to:

Oracle Database 18c Enterprise Edition Release 12.2.0.1.0 - 64bit Production

Sequence created.

Sequence created.

4-82

© 2019 Oracle Corporation

Oracle Autonomous Database

.

.

Table altered.

Table altered.

Trigger created.

Trigger altered.

Trigger created.

Trigger altered.

Trigger created.

Trigger altered.

Trigger created.

Trigger altered.
SQL> exit;
Disconnected from Oracle Database 18c Enterprise Edition Release 12.2.0.1.0 - 64bit
Production
[oracle@localhost aone]$

STEP 3: Build the Docker Image

Now you are ready to build the Docker image. An image is an executable package that includes
everything needed to run an application--the code, a runtime, libraries, environment variables,
and configuration files.

• Change directory to ~/labs/docker/ATPDocker

$ cd ~/labs/docker/ATPDocker

• Build the Docker image.

Note: Don’t forget to include the “.” at the end of the command below. It means to use the
Dockerfile in the current folder. Also, the -t option is to give your image a tag of aone.

$ sudo docker build -t aone .

• Verify the Docker container was built successfully. Note the successfully built message at the
end.

Sending build context to Docker daemon 76.11MB
Step 1/18 : FROM frolvlad/alpine-glibc:alpine-3.8
Trying to pull repository docker.io/frolvlad/alpine-glibc ...
alpine-3.8: Pulling from docker.io/frolvlad/alpine-glibc
cd784148e348: Pull complete

4-83

© 2019 Oracle Corporation

Oracle Autonomous Database

3651dac5ddfb: Pull complete
.
.
Step 19/19 : CMD ["node", "/opt/oracle/lib/aone/server.js"]
 ---> Using cache
 ---> cf2666e8fc40
Successfully built cf2666e8fc40
Successfully tagged aone:latest

• Your image should be ready in less than a minute. The entire image is about 560 MB. Check
the image status using docker images -a.

$ sudo docker images -a

• Docker creates multiple image files as it builds each layer. Your final image would show at the
top of the list and will have the tag you chose.

STEP 4: Launch the Docker Image

A container is launched by running an image. A container is a runtime instance of an image, i.e. the
instantiation of user processes and memory states when the image gets executed.

• Launch the docker image as follows:

$ sudo docker run -i -p 3050:3050 -t aone sh

• Observe that you get the OS prompt (/opt/oracle/lib #) in the docker image, noted by

the arrow above.

STEP 5: Run the Node.js Aone Application

• Within the docker container navigate to aone folder and run server.js script.

$ cd /opt/oracle/lib/aone/

$ node server.js &

• You should get a response similar to this:

4-84

© 2019 Oracle Corporation

Oracle Autonomous Database

• To check the app on the browser, you have bridged port 3050 on the container to your
localhost.

• Open browser on your localhost and go to http://localhost:3050. This is what you see if
your app ran successfully (note the items and their prices are pulled from the autonomous
database).

• Exit the Docker container.

/opt/oracle/lib # exit

• You just built and provisioned an entire application stack consisting of a microservice and an
enterprise grade, self-managing database. You can push your docker image to a
public/private docker repository and it can be pushed to any container orchestration service
either on-premise or with any cloud provider. Your database is autonomous – it provisions
quickly, backs up, patches and tunes itself as needed.

• You have successfully completed this lab.

4-85

© 2019 Oracle Corporation

Oracle Autonomous Database

Lab 4-3: Using Python with Autonomous
Database

Python is a popular general-purpose and dynamic scripting language. With the rise of various
programming frameworks, Python is a common language for Web application development. If you
want to use Python with an Oracle Autonomous Database, this tutorial helps you to get started by
giving some examples.

If you are new to Python review Appendix: Python Primer to gain an understanding of the
language.

Objectives

• Run basic Python code that interacts with an Oracle Autonomous Database

Required Artifacts

• A previously provisioned Oracle Autonomous Database, either Autonomous Transaction
Processing or Autonomous Data Warehouse.

• Ensure that you have setup the Oracle Client to connect using the Wallet, using instructions
from the lab Migrating to Autonomous Database using Oracle Data Pump or Loading
Local Data Files using SQL Loader.

• A lab VM with Python preinstalled, along with cx_Oracle extension.

Lab Steps

Sample python code is located in the lab VM in /home/oracle/labfiles folder. You will be
using these sample files to run some basic scenarios, mainly connecting to the autonomous
database and running queries.

STEP 1: Connecting to Autonomous Database

In this step, you will run a sample application that connects to the autonomous database using
wallet and TNS configuration, which was performed in the previous labs.

• Login to the lab VM and start a Terminal session.

• Change directory to ~/labs/python.

$ cd ~/labs/python

https://www.oracle.com/webfolder/technetwork/tutorials/obe/db/OOW11/python_db/python_db.htm#app

4-86

© 2019 Oracle Corporation

Oracle Autonomous Database

• Copy the sample python script from /home/oracle/labfiles folder that validates Oracle
database connectivity and prints the database version.

$ cp ~/labfiles/python_connect.py ~/labs/python

• Review the sample Python code using your favorite editor.

$ gedit python_connect.py

• The cx_Oracle module is imported to provide the API for accessing the Oracle database.
The os module is imported as the Python script needs to access the OS environment variables
(to capture User, Password and TNS Alias). Many inbuilt and third-party modules can be
included in this way in Python scripts.

import os
import cx_Oracle

• The connect() method initiates the connection to the Oracle database. It takes the user
name, password and the TNS Alias. Other connection methods such as Oracle’s Easy Connect
is also supported.

In Python, you would use os.environ.get to access the OS environment variables.

conn = cx_Oracle.connect(os.environ.get(), os.environ.get(), os.environ.get())

• Python treats everything as an object. The conn object has a version attribute, which is a
string.

print conn.version

• The close() method closes the connection. Any connections not explicitly closed will be
automatically released when the script ends.

conn.close()

• Exit the editor.

• Next, initialize the Linux shell variables with the database user name, password and the TNS
alias. These variables are used within the Python scripts to connect to the database.

• Set the user name for the connection. Typically, this is the ADMIN user.

$ export ORAUSER=<User>

• Set the password for the user. The password for ADMIN should be set as “WElcome_123#” if
you followed the lab instructions verbatim.

$ export ORAPASS=<Password>

4-87

© 2019 Oracle Corporation

Oracle Autonomous Database

• Set the TNS Alias that was setup earlier to connect to the autonomous database. Typically,
you would be connecting to the _TP service of Autonomous Transaction Processing or _HIGH
or Autonomous Data Warehouse.

$ export ORATNS=<TNS Alias>

• Now you are ready to run the script from the command prompt, as follows:

$ python python_connect.py

• Observe the results. If the connection succeeds, the version number is printed. An exception is
thrown if the connection fails.

STEP 2: Connecting to Autonomous Database

A common task when developing Web applications is to query a database and display the results
in a Web browser. There are a number of functions you can use to query an Oracle database, but
the basics of querying are always the same:

– Parse the statement for execution

– Bind data values (optional)

– Execute the statement

– Fetch the results from the database

A sample Python script is placed in your lab VM that runs a simple SQL on the autonomous
database and display the results.

• First, ensure that you are in the ~/labs/python directory.

$ cd ~/labs/python

• Copy the sample python script python_resultset.py from /home/oracle/labfiles.

$ cp ~/labfiles/python_resultset.py ~/labs/python

• Review the sample Python code using your favorite editor.

$ gedit python_resultset.py

• Notice that the variable sql is initialized with a SQL query. Also note that the bind variable
:country_code can be passed to the SQL.

sql="""SELECT channel_desc, TO_CHAR(SUM(amount_sold),'9,999,999,999') SALES$,
 RANK() OVER (ORDER BY SUM(amount_sold)) AS default_rank,
 RANK() OVER (ORDER BY SUM(amount_sold) DESC NULLS LAST) AS custom_rank
 FROM sh.sales, sh.products, sh.customers, sh.times, sh.channels, sh.countries
 WHERE sales.prod_id = products.prod_id

4-88

© 2019 Oracle Corporation

Oracle Autonomous Database

 AND sales.cust_id = customers.cust_id
 AND customers.country_id = countries.country_id
 AND sales.time_id = times.time_id
 AND sales.channel_id = channels.channel_id
 AND times.calendar_month_desc IN ('2000-09','2000-10')
 AND country_iso_code = :country_code
 GROUP BY channel_desc"""

• The cursor() method opens a cursor for statements to use.

cursor = conn.cursor()

• The cursor.execute() method parses and executes the SQL statement. Note that the SQL
is passed as a variable sql and the bind variable country_code is set to US.

cursor.execute(sql, country_code = 'US')

• The fetchall() method fetches all rows returned by the SQL.

cursor.fetchall()

• Exit the editor.

• If you are using a different terminal than the previous step, initialize the Linux shell variables
with the database user name, password and the TNS alias. These variables are used within the
Python scripts to connect to the database.

$ export ORAUSER=<User>

$ export ORAPASS=<Password>

$ export ORATNS=<TNS Alias>

• Now you are ready to run the script from the command prompt, as follows:

$> python python_resultset.py

• Observe the results. If the script succeeds, you will see the following results.

5-89

© 2019 Oracle Corporation

Oracle Autonomous Database

5. Managing the Autonomous
Database

5-90

© 2019 Oracle Corporation

Oracle Autonomous Database

Lab 5-1: Start, Stop and Scale Autonomous
Database

This section outlines the management activities that you would typically perform on Oracle
Autonomous Database. Tasks such as starting and stopping the service and scaling the service are
covered.

Objectives

• Start and Stop the ADB service

• Scale the ADB service

Required Artifacts

• Please ensure you have provisioned an Oracle Autonomous Transaction Processing or an
Autonomous Data Warehouse instance.

Lab Steps

STEP 1: Stopping ATP Service

• Sign in to your ADB Service Console and browse to the Autonomous Database Details page
of your service.

Note: Please ensure that you ONLY access the service you have created in the previous labs and
not the ones created by others.

• Click Stop to stop the service.

5-91

© 2019 Oracle Corporation

Oracle Autonomous Database

• Click Stop again when prompted for confirmation.

• The ADB service will take a few seconds to stop. Notice the status of STOPPING.

• When the service is stopped, the status will change to STOPPED.

STEP 2: Starting ADB Service

• From the Details page of your ADB service, click Start to start your service.

5-92

© 2019 Oracle Corporation

Oracle Autonomous Database

• Click Start again when prompted for confirmation.

• The ADB service will take a few seconds to start. For example, if you provisioned ATP service,
you would notice the status of STARTING as follows:

• When the service is started, the status will change to AVAILABLE.

STEP 3: Scaling ADB Service

• From the Details page of your ADB service, click Scale Up/Down to scale your service.

5-93

© 2019 Oracle Corporation

Oracle Autonomous Database

• In the Scale Up/Down pop up, modify the CPU CORE COUNT to 4 and click Update.

Note: Please do not enter a CPU core count beyond 4 as the instance is shared by all students and
you will run into resource limitations.

• The ADB service will take a few seconds to scale. Notice the status of SCALING IN PROGRESS.

Note that the ATP square remains green during the scaling process. No interruption to the service
occurs during all scaling operations.

• When the scaling task is complete, the status will change to AVAILABLE.

5-94

© 2019 Oracle Corporation

Oracle Autonomous Database

• Note the new CPU Core Count is reflected in the service details.

• You have successfully completed the objectives of this lab.

5-95

© 2019 Oracle Corporation

Oracle Autonomous Database

Lab 5-2: Using REST APIs to Manage ADB

Often times, you would prefer to interact with your cloud services programmatically over REST
rather than log into the cloud console and click through screens. Besides, by creating your own
deployment and management scripts you can save and reuse your deployments, set gold
standards and in fact store entire application infrastructure stacks as version-controlled code.

The Oracle Cloud Infrastructure APIs are typical REST APIs that use HTTPS requests and
responses and support HTTPS and SSL protocol TLS 1.2, the most secure industry standards.

Also, All Oracle Cloud Infrastructure API requests must be signed for authentication purposes. To
create and sign your API requests, you must:

• Form the HTTPS request (SSL protocol TLS 1.2 is required).

• Create the signing string, which is based on parts of the request.

• Create the signature from the signing string, using your private key and the RSASHA256
algorithm.

• Add the resulting signature and other required information to the Authorization header in the
request.

While these seem like a lot of steps, they are meant to avoid using username/passwords and are
based on the draft-cavage-httpsignatures-08 specification for secure communication over the
internet.

Let's take a look at how to generate REST calls to the Oracle Cloud Infrastructure using a popular
scripting language like node.js. You may use similar concepts to build scripts in Python, Golang,
Ruby, Perl, Java, C#, bash or even curl!

Objectives

• Learn how to generate REST calls to the Oracle Cloud Infrastructure using node.js scripts.

Required Artifacts

• A previously provisioned Oracle Autonomous Transaction Processing or Autonomous
Data Warehouse Database.

• Access to a lab VM with the following software preinstalled:

– Node.js

– Node.js libraries: oracledb, async, app, express

Lab Steps

STEP 1: Setup the Sample Node.js Application

5-96

© 2019 Oracle Corporation

Oracle Autonomous Database

A sample set of Node.js scripts that performs a simple create, lookup, delete operations on the
ADB Cloud Services using REST has been prebuilt for this lab. In this step, you will copy the sample
scripts from a location where it was previously downloaded.

• Login to the lab VM and start a Terminal session.

• Change directory to ~/labs/rest

$ cd ~/labs/rest

• Copy the sample node.js scripts from /home/oracle/labfiles folder.

$ cp ~/labfiles/ATPRest.tar .

• Run the following tar command to extract the application source in the ~/labs/rest folder:

$ tar xzvf ATPRest.tar

STEP 2: Generate SSH Key Pair in PEM Format and the API Fingerprint

• First, check if the Fingerprint has already been generated for you. Check the contents of
~/labs/keys/fingerprint.txt file. If it is seeded with a value, then you would use this pre-
generated Fingerprint in the later steps.

$ cat ~/labs/keys/fingerprint.txt

• If the above step returns a Fingerprint:

– Copy the Fingerprint and paste it in a notepad as you will need later it to sign your
API requests.

– Copy the pre-generated Private Key file to ~/labs/rest folder as you would need the
private key in the later steps as well.

$ cp ~/labs/keys/oci_api_key.pem ~/labs/rest

• If the Fingerprint and Private Key has not been generated, follow the below steps:

STOP!

If you have copied the Fingerprint and the Private Key from above steps, skip the
remaining instructions and proceed directly to Step 3.

Fingerprint

5-97

© 2019 Oracle Corporation

Oracle Autonomous Database

• Generate a private key in PEM format that is suitable for openssl.

$ openssl genrsa -out ~/labs/rest/oci_api_key.pem 2048

Note: PEM stands for Privacy Enhanced Mail and is a widely used X.509 encoding format used
for security certificates.

• Modify the permissions of the generated key.

$ chmod go-rwx ~/labs/rest/oci_api_key.pem

• Generate a PEM public key using the private key just created.

$ openssl rsa -pubout -in ~/labs/rest/oci_api_key.pem -out \

~/labs/rest/oci_api_key_public.pem

• Now you are ready to generate the API Keys/Fingerprint using the keys you just generated.

• Sign in to Oracle Cloud Infrastructure Home Page. Click on the top right user drop-down
and select User Settings.

• On the User Details page, click on API Keys from the left Resources menu.

• Click Add Public Keys.

5-98

© 2019 Oracle Corporation

Oracle Autonomous Database

• Go to the Terminal windows and cat the oci_api_key_public.pem file.

$ cat ~/labs/rest/oci_api_key_public.pem

• From the terminal, select and COPY the output from BEGIN PUBLIC KEY to END PUBLIC
KEY.

Note: Below is an example output (DO NOT COPY from here):

-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAtMG9BPWCRdAo3+fzempt
eo7VSznMjap3Qy39QxvO3tCszp9kXir8LlRYq3h02UnBsXYBjVdFBVi1qaET976g
0TF8bqSQHwo7iu+E1L8g50OUUkkSqCBTyU18WgLWJGBVGKUAu7UmH19eGZDUH24o
66vuRTL1REjFDIJz7vdUPou5AUwUE90VcKnTAneMtOuIQ0WaHhVpVzic5C+2uKVn
uHcb11JSfZnM8MSvmGoiWyeFi8cKDj9gI2ahKaou0F8obOmNoMD31r2zd1KAiDfp
AGlMq4ZRtKCQyx2cdqyUVVEBPV9XHMIP8HJ/SawNO47eNzf1CQIN0XLY0TPcbDh4
YwIDAQAB
-----END PUBLIC KEY-----

• In the Add Public Key dialog, paste your oci_api_key_public.pem key and click on Add.

• The service generates a Fingerprint. Copy the fingerprint and paste it in a notepad as you
will need it later to sign your API requests.

5-99

© 2019 Oracle Corporation

Oracle Autonomous Database

STEP 3: Get OCI Authentication Info

• In this step you will:

– Get the User OCID

– Get the Tenancy OCID

– Get the Compartment OCID

• Ensure you are logged in to the Oracle Cloud Infrastructure Home Page.

• Get the User OCID. On the same page, locate the User Information section and COPY the
user OCID and paste it in a notepad. You will need this info later as well.

• Get the Tenancy OCID. Click on the top right user drop-down and select Tenancy.

• Copy the Tenancy OCID and also paste it in a notepad.

5-100

© 2019 Oracle Corporation

Oracle Autonomous Database

• Get the Compartment OCID. Click on
the top left Menu and select Identity ->
Compartments.

• On the Compartment section, locate the compartment assigned to you by your instructor in
the lab handout. Click Copy to copy the Compartment OCID and paste the values to the
notepad as well.

5-101

© 2019 Oracle Corporation

Oracle Autonomous Database

• The Fingerprint, Tenancy OCID, User OCID, Compartment OCID copied earlier, along with
user's Private Key make up a unique signature that is used to sign the REST requests.

• Your notepad may look something similar to this:

Note: It is extremely important that you do not share this with anyone or expose it over an
unencrypted network.

STEP 4: Create an ATP Database using REST

• Change directory to the folder where Node.js scripts were uncompressed earlier.

$ cd ~/labs/rest/ATPRest

• Edit the auth.js script. This module has all the user authentication information used to
generate the signature and other header information including compartments.

5-102

© 2019 Oracle Corporation

Oracle Autonomous Database

• You will need to replace the values of the following variables with the values you copied to
the notepad:

– tenancyId : The Tenancy OCID copied earlier.

– authUserId : The User OCID copied earlier.

– keyFingerprint : The Fingerprint copied earlier.

– compartments : The Compartment OCID copied earlier.

– privateKeyPath : The location of your private key file, mainly
/home/oracle/labs/rest/oci_api_key.pem.

• Your auth.js file should look similar to:

var tenancyId=
"ocid1.tenancy.oc1..aaaaaaaawrgt5au6hbledhhyas2secm3q2atqiuvihck45rbi3jyc5tfyfga";
var authUserId=
"ocid1.user.oc1..aaaaaaaavscszlxxcf2wnq73nxpguxtubvpxaklqbspmuuml7xxp26mbxmgq";
var keyFingerprint = "0d:33:d8:eb:9a:48:2a:15:cd:36:2e:f5:20:fe:b3:d3";
var Compartment =
"ocid1.compartment.oc1..aaaaaaaai75jrzzbfe6t43fd6yivpqngk2tufisqnohacf3s26p6uhcgz7b
q";
var privateKeyPath = "/home/oracle/labs/rest/oci_api_key.pem";

• Browse the region.js script. This module lists all the API endpoints for OCI. You do not need
to change anything here unless a new service gets added or Oracle makes a change to the
URLs.

• Browse the headers.js scripts. This module builds API signing keys and generates https
headers required for your REST calls depending upon whether it's a GET, PUT, POST or
DELETE call. You do not need to modify anything here.

• It also has an option getUser method used in every REST call to get user information from the
Identity and Access Management services. You may use that example to generate other IAM
REST calls.

• The other scripts, mainly createAutonomousDatabase.js, listAutonomousDatabase.js,
createVCN.js, getAutonomousDatabase.js, deleteAutonomousDatabase.js, are the scripts
you would need to run. Make sure the variable in each of these scripts are set right before you
run them.

• Edit the createAutonomousDatabase.js script and replace the following to match your
requirements:

– displayName : ATP Database Display Name (Append your initials or a number for
uniqueness)

– dbName : ATP Database Name (Append your initials or a number for uniqueness)

– adminPassword : Password for the ADMIN user

5-103

© 2019 Oracle Corporation

Oracle Autonomous Database

– cpuCoreCount : CPU Core Count

– dataStorageInTbs : Storage in TB for the Service

– host region : Region for the Service

• For example, here is how createAutonomousDatabase.js will look after your edits:

function createATP(callback) {
var body = JSON.stringify({
 "compartmentId" : auth.Compartment,
 "displayName" : "ATPLab10",
 "dbName" : "ATPLab10",
 "adminPassword" : "AVeryLongPassword321!",
 "cpuCoreCount" : 1,
 "dataStorageSizeInTBs" : 1
});

• Modify the region as identified by the host variable of the options structure. The valid values
for host for your Region are (use the Region that was allocated to you by the instructor):

– us-phoenix-1 : regions.dbPhoenixRegion

– us-ashburn-1 : regions.dbAshburnRegion

– us-frankfurt-1 : regions.dbFrankfurtRegion

– us-london-1 : regions.dbLondonRegion

• Modify the value of the host variable according to the Region allocated to you:

var options = {
 host: <region>,
 path: '/20160918/autonomousDatabases',
 method: 'POST',
 headers: {
 "Content-Type": "application/json"
 }
 };

• Now, let's create an ATP Service running the createAutonomousDatabase.js:

$ node createAutonomousDatabase.js

• Note the output from the script doesn't have any errors. Also note that the last state of the
REST call was PROVISIONING.

[oracle@localhost ATPRest]$ node createAutonomousDatabase.js
{ capabilities:
 { canUseConsolePassword: true,
 canUseApiKeys: true,
 canUseAuthTokens: true,
 canUseSmtpCredentials: true,
 canUseCustomerSecretKeys: true },
 identityProviderId: null,
 externalIdentifier: null,
 timeModified: '2019-01-07T03:35:20.069Z',
 id:
 'ocid1.user.oc1..aaaaaaaa5f7hft2xz4qtrlqeo3wsbhqwumur4jjsgkircxxbmzfjjhcek3qa',

Ensure uniqueness by appending your

initials to dbName and displayName

5-104

© 2019 Oracle Corporation

Oracle Autonomous Database

 compartmentId:
 'ocid1.tenancy.oc1..aaaaaaaafj37mytx22oquorcznlfuh77cd45int7tt7fo27tuejsfqbybzrq',
 name: 'maqsood.alam@oracle.com',
 description: 'Maqsood Alam',
 timeCreated: '2017-01-17T17:47:31.861Z',
 freeformTags: {},
 definedTags: {},
 lifecycleState: 'ACTIVE' }

CREATING ATP Service:
{ additionalDatabaseStatus: null,
 autonomousPodId: null,
 compartmentId:
 'ocid1.compartment.oc1..aaaaaaaa54jv2ikbsdbatol4dapwksrspmssr6arcllifsj3qvwzjowb5qjq',
 connectionStrings: null,
 cpuCoreCount: 1,
 dataStorageSizeInTBs: 1,
 dbName: 'ATPLab10',
 dbVersion: null,
 definedTags: {},
 displayName: 'ATPLab10',
 freeformTags: {},
 id:

'ocid1.autonomousdatabase.oc1.phx.abyhqljs56zurehbnt6anuaim7gofsu4qeuild6372v3exojxi2h3n3xcbf

a',
 isDedicated: false,
 licenseModel: 'BRING_YOUR_OWN_LICENSE',
 lifecycleDetails: null,
 lifecycleState: 'PROVISIONING',
 serviceConsoleUrl: null,
 timeCreated: '2019-01-07T04:37:54.540Z' }
[oracle@localhost ATPRest]$

• Verify the service has started provisioning. Browse to the Autonomous Transaction
Processing page and locate the service with the ATP Service name you provisioned.

Note: If you do not see your service listed, ensure that you have selected the correct Region.

• You have successfully created the autonomous database using REST API.

• You may build similar scripts using Python, Java, golang, Perl, C#, bash and Curl.

• You have successfully completed this lab.

6-105

© 2019 Oracle Corporation

Oracle Autonomous Database

6. Performance Monitoring

6-106

© 2019 Oracle Corporation

Oracle Autonomous Database

Lab 6-1: Database Services and Resource
Management in ATP

The priority of user requests in Autonomous Transaction Processing is determined by the
database service the user is connected with. Users are required to select a service when
connecting to the database. The service names are in the format:

• <database_name>_low

• <database_name>_medium

• <database_name>_high

• <database_name>_tp

• <database_name>_tpurgent

These services map to the LOW, MEDIUM, HIGH, TP and TPURGENT resource manager
consumer groups. As a user you need to pick the database service based on your performance and
concurrency requirements.

For example, a user connecting with the *_low service uses the consumer group LOW. The TP
services are focused on high concurrency low parallelism operations whereas low, medium and
high focus on increasing levels of serialized execution of highly parallelized operations. The basic
characteristics of these consumer groups are:

• HIGH : A high priority application connection service for reporting and batch operations. All
operations run in parallel and are subject to queuing.

• MEDIUM : A typical application connection service for reporting and batch operations. All
operations run in parallel and are subject to queuing.

• LOW : A lowest priority application connection service for reporting or batch processing
operations. This connection service does not run with parallelism.

• TP : A typical application connection service for transaction processing operations. This
connection service does not run with parallelism.

• TPURGENT : The highest priority application connection service for time critical transaction
processing operations. This connection service supports manual parallelism.

In this section you will connect to TP database services and observe resource allocations.

Objectives

• Observe Resource Manager allocations for consumer groups.

Required Artifacts

• Please ensure you have provisioned an Oracle Autonomous Transaction Processing or an
Autonomous Data Warehouse instance.

6-107

© 2019 Oracle Corporation

Oracle Autonomous Database

• Oracle SQL Developer installed, or access to a lab VM with Oracle SQL Developer.

Lab Steps

STEP 1: Query Resource Manager Allocations

Oracle Database Resource Manager enables you to manage multiple workloads within a database
that are contending for system and database resources. Oracle Autonomous Database utilizes the
Resource Manager extensively to control resource allocation to user sessions, such as for CPU and
Parallelism.

• In a previous lab you created a connection to the *_TP service from SQL Developer using the
ADMIN user. Let's connect to this TP service.

• Run the following SQL to check the Consumer Group of your connected session.

SELECT se.sid sess_id, co.name consumer_group,

 se.state, se.consumed_cpu_time cpu_time,

 se.cpu_wait_time, se.queued_time

FROM v$rsrc_session_info se, v$rsrc_consumer_group co

WHERE se.current_consumer_group_id = co.id

AND se.sid = sys_context('USERENV','SID');

• Notice that you are connected to the TP consumer group which is to be expected.

6-108

© 2019 Oracle Corporation

Oracle Autonomous Database

• Next, check the resource allocations of your connected session.

SELECT plan, group_or_subplan, mgmt_p1, parallel_degree_limit_p1,

parallel_server_limit

FROM DBA_RSRC_PLAN_DIRECTIVES

WHERE group_or_subplan IN (SELECT resource_consumer_group FROM v$session

WHERE sid = SYS_CONTEXT('USERENV','SID'));

• Note that the TP consumer group is allotted 8 CPU shares and a Parallel Degree Limit of 1
(no parallel).

• Check the resource allocations of other Consumer Groups.

6-109

© 2019 Oracle Corporation

Oracle Autonomous Database

SELECT plan, group_or_subplan, mgmt_p1, parallel_degree_limit_p1,

parallel_server_limit

FROM DBA_RSRC_PLAN_DIRECTIVES

where group_or_subplan IN ('TP','TPURGENT','LOW','HIGH','MEDIUM');

• You have successfully completed this lab.

6-110

© 2019 Oracle Corporation

Oracle Autonomous Database

Lab 6-2: Scalability and Performance

You have seen by now that Oracle Autonomous Database provides the capability to dynamically
scale your compute capacity. The expectation is that when you scale up and add more CPUs, you
will get higher performance and throughput.

In this lab you will scale the CPUs and observe the impact on workload performance.

Objectives

• Scale CPUs and observe the impact on query performance using SQL Developer.

Required Artifacts

• Ensure you have provisioned an Oracle Autonomous Transaction Processing service.

• Ensure that Oracle SQL Developer installed, or you have access to a lab VM.

Lab Steps

STEP 1: Create a Connection to the *_HIGH Service

• In the previous labs you have created a connection in SQL Developer to connect to the *_TP
service or the *_LOW service. Now, create a new connection to connect to the *_HIGH service
as the ADMIN user, using the instructions from an earlier lab.

• Click on Test, then Save, and then Cancel to save the connection and exit the dialog.

STEP 2: Scale Down CPUs and Run a Sample Query

6-111

© 2019 Oracle Corporation

Oracle Autonomous Database

• In one of the previous labs you may have scaled up the CPUs. Let's scale them down and run a
sample query to record execution time (skip this step if your service is running with 1 CPUs
already).

• Browse to the Autonomous Transaction Processing Database Details page of your ATP
service and click Scale Up/Down to scale your service.

• In the Scale Up/Down pop up, modify the CPU Core Count to 1 and click Update.

• Wait for the scaling task to complete.

IMPORTANT: To get a good performance baseline, we need to restart the ADB service. This is to
clear the buffer cache of cached query results and to get realistic query runtime when there is IO
involved. This is needed for apples-to-apples comparison.

• Click Stop to stop the service.

• Click Start to start your service.

6-112

© 2019 Oracle Corporation

Oracle Autonomous Database

• Wait for the service to start.

• Connect to HIGH service connection that you have just created in SQL Developer. Copy and
paste the following example query and select Run Script (or F5). Note the runtime of the
query. (if you connected already before the Stop/Start operation, you would need to
reconnect)

SELECT /*HIGH 1 CPUs*/ count(*)

FROM ssb.customer;

• From the above screenshot, note that the execution time of the sample query using 1 CPUs is
about 200 secs (YMMV).

STEP 3: Scale Up CPUs and Rerun the Sample Query

• Let's now scale up the CPUs to 4. Click Scale Up/Down once again.

6-113

© 2019 Oracle Corporation

Oracle Autonomous Database

• In the Scale Up/Down pop up, modify the CPU Core Count to 4 and click Update.

• Again, wait for the scaling task to complete.

• Once again, to get a good performance comparison, you need to stop and restart the service.
Click Stop to stop the service.

• Click Start to start your service.

• Wait for the service to start.

6-114

© 2019 Oracle Corporation

Oracle Autonomous Database

• Re-Connect your SQL Developer connection to HIGH service. Copy and paste the following
example query and select Run Script (or F5). Note the runtime of the query. (if you
connected already before the Stop/Start operation, you would need to reconnect)

SELECT /*HIGH 4 CPUs*/ count(*)

FROM ssb.customer;

• From the above screenshot, notice that the execution time of the sample query using 4 CPUs
is about 6 secs (your numbers will vary). The workload runs much faster with 4 CPUs when
compared previously with 1 CPUs.

• Since Oracle ADB customers get billed only for the CPUs allocated, you are in control of
allocating the right number of CPUs to achieve the best cost-performance balance for your
workload.

• You have now experienced that scaling has an immediate impact on performance. You have
successfully completed this lab.

6-115

© 2019 Oracle Corporation

Oracle Autonomous Database

Lab 6-3: Performance Monitoring

The Overview and Activity tabs in the Service Console provide information about the
performance of the ADB service and the workload.

In this lab you will utilize the built-in performance monitoring screens of the autonomous
database.

Objectives

• Explore performance monitoring capability of ADB using the service console.

Prerequisite Steps

• Please ensure you have provisioned an Oracle Autonomous Transaction Processing or an
Autonomous Data Warehouse instance.

• Ensure that you have completed the Scalability and Performance lab.

Lab Steps

STEP 1: Monitoring Performance Using ADB Service Console

• Sign in to your ADB Service Console and browse to Autonomous Database Details and
click on Service Console.

• You will be presented the Overview page. The Overview page shows real-time and historical
information about the utilization of the service. The components on this page are:

– Storage : This chart shows the total and used storage capacity of the service. It
indicates what percentage of the space is currently in-use.

– CPU utilization (%): This chart shows the historical CPU utilization of the service.

6-116

© 2019 Oracle Corporation

Oracle Autonomous Database

– Running SQL statements : This chart shows the average number of running SQL
statements historically.

– Average SQL statement response time : This chart shows the average response time
of SQL statements historically.

– SQL statements executed per second : This chart shows the SQL statements
executed per second.

• Select Activity from the left-menu.

• The Activity page has two main tabs - Monitor and Monitored SQL.

• The Monitor tab (also the landing tab for Activity) shows real-time and historical information
about the utilization of the service. The components on this page are:

– Database Activity: This chart shows the average number of sessions in the database
using CPU or waiting on a wait event.

– CPU Utilization: This chart shows the CPU utilization of each consumer group.

6-117

© 2019 Oracle Corporation

Oracle Autonomous Database

– Running Statements: This chart shows the average number of running SQL
statements in each consumer group.

– Queued Statements: This chart shows the average number of queued SQL statements
in each consumer group.

• Explore the Monitor tab. Notice that as you hover over each chart you will see the different
metrics for the different services. Running the cursor over any of the graphs will provide
more detailed information. The default is to report Real Time activity, but specific time
period activity can be examined by selecting the Time Period button.

• To analyze specific SQL statements, click on the Monitored SQL tab.

• This tab displays the SQLs (completed or running) in chronological order. Note the following
SQLs that you recently ran using the HIGH service were monitored and show up on this
screen.

Note: If you want to see additional SQL statements on the Monitored SQL tab, run in SQL
Developer Star Schema Benchmark Queries from here.

https://docs.oracle.com/en/cloud/paas/autonomous-data-warehouse-cloud/user/sample-queries.html#GUID-C7C6E2D0-CADA-4483-B26D-1BD5998A0EBA

6-118

© 2019 Oracle Corporation

Oracle Autonomous Database

• Upon scrolling the table to the right, you can see the Consumer Group and the Parallel
degree that was used by the SQLs. Note that the HIGH consumer group with 1 CPU ran the
query serially (no parallel).

• Let's further analyze the above SQLs to get additional insight on how they were executed.

• Right-click the row with the HIGH consumer group and parallel of 8 and select Show Details.

• The Show Details -> Overview tab provides information about the SQL that was executed,
user, execution times, and service used (consumer group). Notice that this was the query
executed in the _HIGH service. Also look at Duration in the Time & Wait Statistics section
on the lower left.

6-119

© 2019 Oracle Corporation

Oracle Autonomous Database

• HIGH service uses parallelism and to corroborate that click the Parallel tab. You will notice
that the query executed in parallel, with 8 parallel threads (indicated by the Parallel Server
information). That is because the _HIGH service will automatically parallelize transactions
depending on the number of CPU’s available.

• Exit the above screen.

• Next, from the Activity -> Monitored SQL page, right-click the row that ran using the HIGH
consumer group but with 1 CPUs (i.e. serially) and select Show Details.

6-120

© 2019 Oracle Corporation

Oracle Autonomous Database

• Which brings up the Overview page. Note that this query was run using the _HIGH service.

• Click on the Parallel and observe that there is no data to display, confirming there was no
parallelization for this query (query ran serially as there were only 1 CPUs allotted).

• You have successfully completed this lab.

7-121

© 2019 Oracle Corporation

Oracle Autonomous Database

7. Optional Labs

7-122

© 2019 Oracle Corporation

Oracle Autonomous Database

Lab 7-1: Exploring Autonomous Database Using
SQL Developer

In this lab you will explore the DBA view in Oracle SQL Developer and browse the ADB
configuration and settings.

Please note that most of the database settings and parameters cannot be modified in a fully-
managed Oracle Autonomous Database (ATP and ADW) environment and that is the whole point
of the ADB service. Nevertheless, this lab will help the DBAs observe that the underlying engine
for Oracle ADB is the same Oracle Database they are usually accustomed to managing on-premise
or in the Oracle Database Cloud Service.

Objectives

• Explore the DBA view of SQL Developer when connected to the autonomous database.

Required Artifacts

• Please ensure you have provisioned an Oracle Autonomous Transaction Processing or an
Autonomous Data Warehouse instance.

• Oracle SQL Developer installed, or access to a lab VM with Oracle SQL Developer.

Lab Steps

STEP 1: Exploring ADB Using DBA View of SQL Developer

1) Create the DBA Connection

• Start SQL Developer and connect any of the pre-defined services of the autonomous
database using ADMIN user.

Note: Ensure that you use ADMIN user as regular users do not have the privileges to view any
database configuration.

7-123

© 2019 Oracle Corporation

Oracle Autonomous Database

• Add the DBA view in SQL Developer by clicking View -> DBA.

Note: If you are not able to see the DBA view on the left after doing the above, or unable to locate
the DBA option in the View menu, go to Window and select Reset Window to Factory Setting
and try again.

• The DBA view appears on the bottom left.

7-124

© 2019 Oracle Corporation

Oracle Autonomous Database

• Click the green plus sign in the DBA view to add a new connection.

• Select the connection you created earlier that connects to the ADB service using the ADMIN
user.

• You should see the connection added to the DBA view.

7-125

© 2019 Oracle Corporation

Oracle Autonomous Database

• Expand the connection by clicking on the plus sign. This will open up all the DBA views of the
database.

2) View the Initialization Parameters

• Expand Database Configuration and click on Initialization Parameters to view the
database initialization parameters and their settings.

7-126

© 2019 Oracle Corporation

Oracle Autonomous Database

• ADB configures the database initialization parameters based on the compute and storage
capacity provisioned. You do not need to set any initialization parameters to start using your
ADB Service but you may modify a few parameters if there is a need (the list of modifiable
parameters is provided in the documentation).

7-127

© 2019 Oracle Corporation

Oracle Autonomous Database

3) View ADB Services

• Click on Services. Observe the five services (in case of ATP) configured and discussed in the
earlier labs (the sixth one is the default service of the database).

4) View DB Features In-Use

• Click on Database Features Usage you can see the features currently in use. As with other
views, columns can be sorted, so for example you can sort the CURRENTLY_USED column by
TRUE to see all the features being used.

7-128

© 2019 Oracle Corporation

Oracle Autonomous Database

5) View Instance Charts

• Expand the Database Status tree and double click on Instance Viewer.

• Give it a few seconds to generate the charts. This displays a lot of information about the
instance, usage and configuration as well as the TOP SQL running on the instance.

• You can select any SQL from TOP SQL, right click and select Details.

7-129

© 2019 Oracle Corporation

Oracle Autonomous Database

• You may be prompted to acknowledge that you have Oracle Tuning Pack license. Click Yes
to continue.

• The SQL Details tab will be opened. You may examine the SQL specifics such as the SQL Text
and Explain Plan output further.

6) Browse the AWR Reports

• One of the most familiar tools for the DBAs is the AWR Report. Expand the Performance ->
AWR menu, select AWR Report Viewer and select the snapshot range to explore the AWR
Report.

IMPORTANT: You may not see any Snapshots as they may not be created (yet). Please proceed to
the next step in that case.

7-130

© 2019 Oracle Corporation

Oracle Autonomous Database

Note: Click Yes when prompted to acknowledge Oracle Diagnostic Pack license.

7) Browse Database Backups

• The RMAN Backup/Recovery section contains information about scheduled backups,
backup sets, RMAN Settings and schedules. Customers and DBAs are often interested about
backups on ADB and those can be explored in more detail in this section.

• In the screenshot below the backup sets for this instance are displayed (your instance may
not display any backups since it was just created).

7-131

© 2019 Oracle Corporation

Oracle Autonomous Database

8) Resource Manager and Plans

• The Resource Manager section contains information about different consumer groups and
plans that are defined by ADB, and the current plan in effect. Explore the entries here, most of
them will have contextual activities if you select and right click on them.

• Under Plans -> OLTP_PLAN you will find the current plan being used, which you can verify
by double clicking on Settings. This will display which plan is being used.

7-132

© 2019 Oracle Corporation

Oracle Autonomous Database

• Under OLTP_PLAN (applicable for ATP) if you select and right click on HIGH (or any of the
plans), and select Edit Directives, the specifics of the plan will be displayed.

• You will see the directives for the _HIGH plan.

7-133

© 2019 Oracle Corporation

Oracle Autonomous Database

• The last entry under Resource Manager is Statistics. This view provides graphical views into
system usage by plan user. Double click on Statistics and explore the different screens.

7-134

© 2019 Oracle Corporation

Oracle Autonomous Database

9) Security and Storage

• The Security section is useful to DBAs as they can explore all the Profiles, Roles defined in the
system, Users, and privileges such as system and role privileges granted to the user.

• The Storage section can be used to display all the storage characteristics of the ADB database.
Most of these characteristics cannot be changed, as the autonomous database automatically
manages and optimizes storage for the service. However, the configurations can be examined.
For example, any data in a database will be stored in the DATA Tablespace. Below is a
screenshot of the parameters of the DATA Tablespace (expand Storage -> Tablespaces and
then double click on DATA).

• This concludes the lab. SQL Developer is a very comprehensive powerful tool and you should
continue to explore the benefits it has to offer.

7-135

© 2019 Oracle Corporation

Oracle Autonomous Database

Lab 7-2: Use Swingbench to Generate Workload
and Monitor Performance

Swingbench is an easy to use performance benchmarking tool for the Oracle database. It comes
with its own set of benchmark schemas, data generators, workload generators, along with the
capability to create your own workloads or customize the out-of-the-box workloads. You can
explore more on Swingbench on http://www.dominicgiles.com/index.html.

Note: The lab VM has the Swingbench load generator software pre-installed and configured to run
the Simple Order Entry (SOE) benchmark. The database for the SOE benchmark was loaded into
your autonomous database instance in one of the earlier labs, using Oracle Data Pump.

Objectives

• Use Swingbench to generate a workload and observe workload performance with scaling.

Required Artifacts

• Ensure you have provisioned an Oracle Autonomous Transaction Processing service.

• Ensure that Swingbench is installed, or you have access to a lab VM.

• Ensure that Migrating to ADB Using Data Pump lab is completed and Data Pump was used
to import the soe_export.dmp file.

Lab Steps

STEP 1: Validate Swingbench Schema Objects

• Let's first validate the Swingbench setup in the lab VM. Open a Terminal session and start a
sqlplus session.

$ sqlplus ADMIN/<Admin_Password>@<ATP_Service>

• Upon a successful connection, issue following SQLs to grant the missing privilege and to
recompile the ORDERENTRY package.

SQL> GRANT EXECUTE ON DBMS_LOCK TO SOE;

SQL> ALTER PACKAGE SOE.ORDERENTRY COMPILE;

7-136

© 2019 Oracle Corporation

Oracle Autonomous Database

Note: The above step is needed because Data Pump import did not carry over EXECUTE ON
DBMS_LOCK privilege after creating the SOE thereby making the ORDERENTRY package invalid.

• Exit from the sqlplus session.

SQL> EXIT;

• Change directory to ~/swingbench/bin.

$ cd ~/swingbench/bin

• You can verify the Swingbench schema setup by running the following sbutil command.
Ensure that you specify the full path to your wallet zip file, input the ATP service name and
the SOE user's password:

$./sbutil -soe -cf <Wallet_Zip_File> -cs <ATP_Service> -u SOE -p Welcome_1234 -val

• Your results should be similar to the screenshot below:

7-137

© 2019 Oracle Corporation

Oracle Autonomous Database

• To see the number of rows in each table run the following command:

$./sbutil -soe -cf <Wallet_Zip_File> -cs <ATP_Service> -u SOE -p Welcome_1234 -tables

• Your results should be similar to the screenshot below:

STEP 2: Run the Swingbench SOE Workload

You are now ready to run the Swingbench workload. Workloads are simulated by users submitting
transactions to the database.

• Firstly, scale down the CPUs of your service to 1. We will scale them up later.

7-138

© 2019 Oracle Corporation

Oracle Autonomous Database

• Execute the charbench utility to generate a workload. Here are some commonly used
parameters for charbench:

– -cs : Your <ATP_TPURGENT_Service> name (Use the TPURGENT service)

– -min and -max : The time to sleep between each DML operation in a transaction (intra
sleep). A Transaction is made up of many DML operations.

– -intermin and -intermax : The time to sleep between each transaction.

– -uc : 16 (the number of users that will be ramped-up)

– -di : SQ,WQ,WA (indicates that transactions SQ,WQ,WA are disabled, as these are
reporting queries).

Note: charbench will place a high load on the database, so don’t run for long periods of time. You
can stop running charbench at any time with CTRL-C.

./charbench -c ~/swingbench/configs/SOE_Server_Side_V2.xml \

 -cf <Wallet_Zip_File> \

 -cs <ATP_TPURGENT_Service> \

 -u soe \

 -p Welcome_1234 \

 -intermin 0 \

 -intermax 0 \

 -min 0 \

 -max 0 \

 -uc 16 \

 -di SQ,WQ,WA

• Once your workload gets stabilized, the output may look similar to the screenshot below
(your results will vary). The columns indicate the wall clock time, the number of users
connected, the transactions per minute (TPM), and the transactions per second (TPS). There
are many other parameters that can be included to show more information.

• The above output was taken with 1 CPUs and connected to TPURGENT service. The TPS
obtained was ~10-15 and TPM ~650-700.

Note: Remember that using the _TPURGENT service for the workload ensures the highest
performance for OLTP.

7-139

© 2019 Oracle Corporation

Oracle Autonomous Database

STEP 3: Scale Up the CPUs and Monitor Performance

• Once the workload has stabilized and you get a consistent TPM, scale up the CPUs to 4.

• Monitor the TPS column to see variation in the transactions per minute from the previous run
with 1 CPUs. Notice the improvement from ~10-15 TPS to ~50-70 TPS for the same
workload when the CPUs were scaled from 1 to 4.

• IMPORTANT: Before you move on, stop the charbench utility by pressing Enter in the
Terminal window.

• You have successfully completed this lab.

7-140

© 2019 Oracle Corporation

Oracle Autonomous Database

Lab 7-3: Backup and Recovery

Oracle Autonomous Database (ADB) is configured to perform automatic backups of your database
and retain them for 60 days. The schedule for these built-in backups is to run a full backup every
week and incremental backups every day.

You can restore and recover your database to any point-in-time in the 60-day retention period, or
to a manually saved backup, in case you have initiated that separately.

Manual Backups

You can perform on-demand manual backups as well, provided you setup a seprate OCI Object
Storage bucket to store the manual backups. This is ideal when you want to take a backup before
some major application change, or for additional data retention requirements due to regulations
which is beyond the 60 days provided by the ADB service.

Recovery

You can initiate recovery for your ADB using the cloud console. ADB automatically restores and
recovers your database to the point-in-time you specify. The recovery process internally decides
which backup to use to provide you the fastest recovery, either the automatic backups or the
manual backups.

Objectives

• Perform a manual backup of the autonomous database

• Perform a point-in-time recovery of the autonomous database

Required Artifacts

• Please ensure you have provisioned an Oracle Autonomous Transaction Processing or an
Autonomous Data Warehouse instance.

• Oracle SQL Developer installed, or access to a lab VM with Oracle SQL Developer.

• Database Credential object created from the lab Loading Data from Object Storage.

IMPORTANT: It is preferred that you complete the REST API lab and use the instance created
using REST APIs for backup and recovery. This will avoid disruption in your lab work when your
main lab instance becomes unavailable.

Lab Steps

STEP 1: Prerequisite Steps for Manual Backups

Manual backups require that you perform a one-time setup for creating an object store bucket in
which the backups will be stored, along with the appropriate credentials to access the bucket.
These steps are typically done once but will need to be repeated once the URL, the credentials, or
OCI bucket changes.

7-141

© 2019 Oracle Corporation

Oracle Autonomous Database

Follow these steps to perform the one-time setup tasks for the manual backups.

1) Create an Object Store Bucket to Store Manual Backups

• Create a bucket to hold the backups. Login to the Oracle Cloud Infrastructure Console and
select Object Storage->Object Storage from the top left menu.

• Select a Compartment from the drop-down on the left. Choose the compartment assigned to
you by your instructor.

• Click on Create Bucket to create the object storage bucket.

7-142

© 2019 Oracle Corporation

Oracle Autonomous Database

• In the Create Bucket dialog box, enter the following:

– Bucket Name: The format of the bucket name is backup_<databasename>, where
<databasename> is your database name in lowercase. For example, if you provision an
ADB instance named ATPLabUser03, the bucket name should be
backup_atplabuser03.

– Storage Tier: Choose Standard as manual backups are only supported with buckets
created in the standard storage tier.

– Encrypt Using Key Management: Unchecked

Note: It is important that you follow the above naming convention and stick with the above
settings as not all options are allowed for a bucket to be used for manual backups.

• Click on Create Bucket.

• Verify the bucket got successfully created.

7-143

© 2019 Oracle Corporation

Oracle Autonomous Database

2) Construct the Bucket URL

Construct the URL that points to the location of the bucket. The URL is structured as follows (the
values for you to specify are in bold):

https://swiftobjectstorage.<region_name>.oraclecloud.com/v1/<tenant_name>

• <region_name> : The region you have created your Object Storage bucket. Typically, this
would be us-phoenix-1, us-ashburn-1, etc.

• <tenant_name> : The OCI tenancy name

In the below example of the URL when the region name is us-phoenix-1 and the tenancy name is
oraclepartnersas (IMPORTANT: Your URL would be different, so please modify accordingly):

https://swiftobjectstorage.us-phoenix-1.oraclecloud.com/v1/oraclepartnersas

3) Set the DEFAULT_BUCKET Property

• Open SQL Developer and connect to your ADB as the ADMIN user.

• Run the following SQL to set the database default_bucket property to point to the URL
constructed above, using the following ALTER DATABASE command (but using your own
URL):

ALTER DATABASE PROPERTY SET

default_bucket='https://swiftobjectstorage.<region_name>.oraclecloud.com/v1/

<tenant_name>';

• Here is a screenshot of a successful execution of the command:

• Verify the default_bucket was altered using the following SQL statement:

SELECT PROPERTY_VALUE from database_properties WHERE

PROPERTY_NAME='DEFAULT_BUCKET';

7-144

© 2019 Oracle Corporation

Oracle Autonomous Database

4) Set the DEFAULT_CREDENTIAL Database Property

In the lab titled Loading Data from Object Storage, you should have created a database
credential object named WORKSHOP_CREDENTIAL. The backup process requires a database
credential to access the object storage and it does that by relying on a database property that you
set; named DEFAULT_CREDENTIAL.

• Set the default_credential database property to the credential just created.

ALTER DATABASE PROPERTY SET default_credential = 'ADMIN.WORKSHOP_CREDENTIAL';

STEP 2: Perform a Manual Backup

Each manual backup creates a full backup on your Oracle Cloud Infrastructure Object Storage
bucket and the backup can only be used by the ADB instance when you initiate a point-in-time-
recovery.

• From Oracle Autonomous Transaction Processing or Oracle Autonomous Data
Warehouse page, select your ADB instance.

• On the details page, under Backups, click Create Manual Backup.

7-145

© 2019 Oracle Corporation

Oracle Autonomous Database

• In the Create Manual Backup dialog enter a name in the Name field and click Create.

• Notice that the status of Backup in Progress:

• And the state of the backups will display as Creating in the Backups section:

7-146

© 2019 Oracle Corporation

Oracle Autonomous Database

Note: While backing up a database, the database is fully functional; however, during the backup
lifecycle management operations are not allowed. For example, stopping the database is not
allowed during the backup.

• The backup will take a few minutes to complete and the status of your service will change
back to Available:

• And the state of the backups will display as Active in the Backups section:

STEP 3: Restore the ADB Database to a Point-in-time

You can initiate recovery for your Autonomous Transaction Processing database using a push
button approach from the cloud console.

1) Generate Transactions

Let's first generate some transactions to validate the restore process.

• Open a SQL Developer worksheet connected to any service that you may have defined earlier
(TP, HIGH, etc.).

• Copy and paste the following SQL script to the worksheet. This script will record some
transactions. This is to test the restore process and ensure that we have recovered to the
correct point-in-time.

7-147

© 2019 Oracle Corporation

Oracle Autonomous Database

Note: The test script creates a table named test_restore. It then inserts one row and commits.
After waiting for 3 minutes, it inserts a second row and commits.

drop table test_restore purge;

create table test_restore (c1 number , c2 timestamp);

insert into test_restore values (1, systimestamp);

commit;

-- Wait for 3 minutes

exec dbms_lock.sleep (180);

insert into test_restore values (2, systimestamp);

commit;

select c1, to_char(c2,'YYYY-MM-DD HH24:MI:SS') time2 from test_restore;

• Run the script by selecting all statements and clicking Run Script button or pressing F5. The
script will take about 3 minutes to run as it is designed to wait for 180 seconds between the
two insert statements.

Note: Ignore any DROP errors reported.

• Please note the timestamps on the two rows inserted as you will use this info in the restore
step. From the above SQL Developer output, the first row was inserted at 2018-12-04
15:57:08 and the second row at 2018-12-04 16:00:09.

7-148

© 2019 Oracle Corporation

Oracle Autonomous Database

2) Restore Database

• Now you are ready to restore your ADB database. From the Autonomous Transaction
Processing Database Details page, click Actions -> Retore.

• In the Restore dialog, select SPECIFY TIMESTAMP and enter the timestamp such that it is in
between the insert of first row and that of the second row. In the above example, the time to
choose will be between 2018-12-04 15:57:08 and 2018-12-04 16:00:09 so we will choose
2018-12-04 15:58:00. Click Done.

• Verify the timestamp one more time and click Restore.

7-149

© 2019 Oracle Corporation

Oracle Autonomous Database

• The restore process will be started. Notice the service status changes to RESTORE IN
PROGRESS.

• The restore process takes about 10 minutes in the lab. In real world, the restore time depends
on the size of the database and how far back in time you need to go and the amount of redo
that needs to be applied.

• After the restore operation is completed, the database will be opened in READ ONLY mode.
This is useful to verify that the point-in-time recovery is successful. The READ ONLY mode is
indicated by the AVAILABLE NEEDS ATTENTION status:

7-150

© 2019 Oracle Corporation

Oracle Autonomous Database

Note: When you restore your database all backups after the restore timestamp are invalidated.

3) Test the Restore

• Test the restore process before opening the database in READ WRITE mode.

• In the previous SQL Developer session, run the following query to check the rows in the
test_restore table.

select c1, to_char(c2,'YYYY-MM-DD HH24:MI:SS') time2 from test_restore;

• When you run the above query, you would see the connection Reconnect message. Click OK
to proceed.

• You should only see one row returned from the SQL, which is the row with the 2018-12-04
15:57:08 timestamp in the lab example.

7-151

© 2019 Oracle Corporation

Oracle Autonomous Database

4) Restart the Database Service

• Once the restore is successful, Stop and Start the service to open the database in READ
WRITE mode.

• Once the restart of the service is complete the service status will change to AVAILABLE.

• You have successfully completed the objectives of this lab.

	0. Workshop Overview
	Introducing Oracle Autonomous Database
	Optimized for Workload Types
	Oracle Autonomous Data Warehouse
	Oracle Autonomous Transaction Processing

	Workshop Objectives
	Lab Environment Setup
	Cloud Accounts
	Required Software
	For Microsoft Windows hosts:
	For macOS, Mac OS X hosts:

	About the Lab VM
	Lab VM Setup Steps
	Optional Downloads
	Lab Manual
	Lab Support Files

	1. Provisioning and Connectivity
	Lab 1-1: Sign-In to Oracle Cloud Infrastructure Console
	Objectives
	Required Artifacts
	Lab Steps

	Lab 1-2: Provisioning an Autonomous Transaction Processing Database
	Objectives
	Required Artifacts
	Lab Steps

	Lab 1-3: Connecting to Oracle Autonomous Database
	Objectives
	Required Artifacts
	Lab Steps

	2. Data Loading and Integration
	Lab 2-1: Loading Data Using SQL Developer Import Data Wizard
	Objectives
	Required Artifacts
	Lab Steps

	Lab 2-2: Loading Data from Object Storage
	Objectives
	Required Artifacts
	Lab Steps

	Lab 2-3: Loading Data Using SQL Loader
	Objectives
	Required Artifacts
	Lab Steps

	3. Migrating to the Autonomous Database
	Lab 3-1: Migrating to Autonomous Database using Data Pump
	Objectives
	Required Artifacts
	Lab Steps

	4. Developing Applications with Autonomous Database
	Lab 4-1: Building Node.js Applications with ADB
	Objectives
	Required Artifacts
	Lab Steps

	Lab 4-2: Building Microservices with Docker
	Objectives
	Required Artifacts
	Lab Steps

	Lab 4-3: Using Python with Autonomous Database
	Objectives
	Required Artifacts
	Lab Steps

	5. Managing the Autonomous Database
	Lab 5-1: Start, Stop and Scale Autonomous Database
	Objectives
	Required Artifacts
	Lab Steps

	Lab 5-2: Using REST APIs to Manage ADB
	Objectives
	Required Artifacts
	Lab Steps

	6. Performance Monitoring
	Lab 6-1: Database Services and Resource Management in ATP
	Objectives
	Required Artifacts
	Lab Steps

	Lab 6-2: Scalability and Performance
	Objectives
	Required Artifacts
	Lab Steps

	Lab 6-3: Performance Monitoring
	Objectives
	Prerequisite Steps
	Lab Steps

	7. Optional Labs
	Lab 7-1: Exploring Autonomous Database Using SQL Developer
	Objectives
	Required Artifacts
	Lab Steps
	1) Create the DBA Connection
	2) View the Initialization Parameters
	3) View ADB Services
	4) View DB Features In-Use
	5) View Instance Charts
	6) Browse the AWR Reports
	7) Browse Database Backups
	8) Resource Manager and Plans
	9) Security and Storage

	Lab 7-2: Use Swingbench to Generate Workload and Monitor Performance
	Objectives
	Required Artifacts
	Lab Steps

	Lab 7-3: Backup and Recovery
	Manual Backups
	Recovery
	Objectives
	Required Artifacts
	Lab Steps
	1) Create an Object Store Bucket to Store Manual Backups
	2) Construct the Bucket URL
	3) Set the DEFAULT_BUCKET Property
	4) Set the DEFAULT_CREDENTIAL Database Property
	1) Generate Transactions
	2) Restore Database
	3) Test the Restore
	4) Restart the Database Service

